login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A341543 a(n) = sqrt( Product_{j=1..n} Product_{k=1..2} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/2)^2) ). 1
8, 36, 200, 1156, 6728, 39204, 228488, 1331716, 7761800, 45239076, 263672648, 1536796804, 8957108168, 52205852196, 304278005000, 1773462177796, 10336495061768, 60245508192804, 351136554095048, 2046573816377476, 11928306344169800 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..21.

Index entries for linear recurrences with constant coefficients, signature (7, -7, 1)

FORMULA

a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3).

a(n) = 6*a(n-1) - a(n-2) - 8.

a(n) = 2*(A001541(n) + 1). - Hugo Pfoertner, Feb 14 2021

G.f.: 4*x*(2 - 5*x + x^2)/((1 - x)*(1 - 6*x + x^2)). - Vaclav Kotesovec, Feb 14 2021

PROG

(PARI) default(realprecision, 120);

a(n) = round(sqrt(prod(j=1, n, prod(k=1, 2, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/2)^2))));

CROSSREFS

Column k=2 of A341533.

Cf. A001541.

Sequence in context: A019022 A079819 A238815 * A290357 A030112 A001555

Adjacent sequences: A341540 A341541 A341542 * A341544 A341545 A341546

KEYWORD

nonn

AUTHOR

Seiichi Manyama, Feb 14 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 21:09 EST 2022. Contains 358484 sequences. (Running on oeis4.)