login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A238815 Number of prime powers p^k (k >= 0) (A000961) <= 10^n. 1
1, 8, 36, 194, 1281, 9701, 78735, 665135, 5762860, 50851224, 455062596, 4118082970, 37607992089, 346065767407, 3204942420924, 29844572385359, 279238346816393, 2623557174778439, 24739954338671300, 234057667428388199, 2220819603016308080, 21127269487386615272 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..21.

FORMULA

a(n) = A076048(n) + A006880(n).

a(n) ~ 10^n/(n log 10). - Charles R Greathouse IV, Mar 05 2014

For n > 0, a(n) = A267712(n) + 1. - Jon E. Schoenfield, Apr 19 2018

MATHEMATICA

f[n_] := Block[{k = t = 1}, While[s = PrimePi[ 10^(n/k)]; s != 0, t = t + s; k++]; t]; Array[f, 15, 0]

PROG

(PARI) a(n)=sum(k=2, 10^n, isprimepower(k)>0)+1 \\ Charles R Greathouse IV, Mar 05 2014

(PARI) a(n)=sum(e=1, n*log(10)\log(2), primepi(sqrtnint(10^n, e)))+1 \\ Charles R Greathouse IV, Mar 05 2014

CROSSREFS

Cf. A006880, A076048, A267712.

Sequence in context: A054627 A019022 A079819 * A290357 A030112 A001555

Adjacent sequences:  A238812 A238813 A238814 * A238816 A238817 A238818

KEYWORD

nonn

AUTHOR

Robert G. Wilson v, Mar 05 2014

EXTENSIONS

a(15)-a(21) from Charles R Greathouse IV, Mar 05 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 02:24 EST 2019. Contains 329910 sequences. (Running on oeis4.)