login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054627
Number of n-bead necklaces with 8 colors.
5
1, 8, 36, 176, 1044, 6560, 43800, 299600, 2097684, 14913200, 107377488, 780903152, 5726645688, 42288908768, 314146329192, 2345624810432, 17592187093524, 132458812569728, 1000799924679192, 7585009898729264, 57646075284033552, 439208192231379680
OFFSET
0,2
LINKS
FORMULA
a(n) = (1/n)*Sum_{d|n} phi(d)*8^(n/d), n > 0.
G.f.: 1 - Sum_{n>=1} phi(n)*log(1 - 8*x^n)/n. - Herbert Kociemba, Nov 02 2016
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} 8^gcd(n,k). - Ilya Gutkovskiy, Apr 17 2021
EXAMPLE
G.f. = 1 + 8*x + 36*x^2 + 176*x^3 + 1044*x^4 + 6560*x^5 + 43800*x^6 + ...
MAPLE
with(combstruct):A:=[N, {N=Cycle(Union(Z$8))}, unlabeled]: seq(count(A, size=n), n=0..20); # Zerinvary Lajos, Dec 05 2007
MATHEMATICA
mx=40; CoefficientList[Series[1-Sum[EulerPhi[i] Log[1-8*x^i]/i, {i, 1, mx}], {x, 0, mx}], x] (* Herbert Kociemba, Nov 02 2016 *)
k=8; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/n, {n, 1, 30}], 1] (* Robert A. Russell, Sep 21 2018 *)
PROG
(PARI) a(n)=if(n==0, 1, 1/n*sumdiv(n, d, eulerphi(d)*8^(n/d))); \\ Altug Alkan, Sep 21 2018
CROSSREFS
Column 8 of A075195.
Column k=1 of A184294.
Cf. A054615.
Sequence in context: A164545 A199310 A316107 * A019022 A079819 A238815
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 16 2000
EXTENSIONS
Edited by Christian G. Bower, Sep 07 2002
a(0) corrected by Herbert Kociemba, Nov 02 2016
STATUS
approved