login
A054626
Number of n-bead necklaces with 7 colors.
3
1, 7, 28, 119, 616, 3367, 19684, 117655, 720916, 4483815, 28249228, 179756983, 1153450872, 7453000807, 48444564052, 316504102999, 2077058521216, 13684147881607, 90467424361132, 599941851861751, 3989613329006536, 26597422099282535
OFFSET
0,2
FORMULA
a(n) = (1/n)*Sum_{d|n} phi(d)*7^(n/d), n > 0.
G.f.: 1 - Sum_{n>=1} phi(n)*log(1 - 7*x^n)/n. - Herbert Kociemba, Nov 02 2016
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} 7^gcd(n,k). - Ilya Gutkovskiy, Apr 17 2021
EXAMPLE
G.f. = 1 + 7*x + 28*x^2 + 119*x^3 + 616*x^4 + 3367*x^5 + 19684*x^6 + ...
MAPLE
with(combstruct):A:=[N, {N=Cycle(Union(Z$7))}, unlabeled]: seq(count(A, size=n), n=0..21); # Zerinvary Lajos, Dec 05 2007
MATHEMATICA
mx=40; CoefficientList[Series[1-Sum[EulerPhi[i] Log[1-7*x^i]/i, {i, 1, mx}], {x, 0, mx}], x] (* Herbert Kociemba, Nov 02 2016 *)
k=7; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/n, {n, 1, 30}], 1] (* Robert A. Russell, Sep 21 2018 *)
PROG
(PARI) a(n)=if(n==0, 1, 1/n*sumdiv(n, d, eulerphi(d)*7^(n/d))); \\ Altug Alkan, Sep 21 2018
CROSSREFS
Column 7 of A075195.
Cf. A054614.
Sequence in context: A302523 A290913 A303406 * A220361 A219737 A316106
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 16 2000
EXTENSIONS
Edited by Christian G. Bower, Sep 07 2002
a(0) corrected by Herbert Kociemba, Nov 02 2016
STATUS
approved