login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220361
a(n) = Fibonacci(n)^3 + (-1)^n*Fibonacci(n-2).
2
1, 7, 28, 123, 515, 2192, 9269, 39291, 166396, 704935, 2986039, 12649248, 53582777, 226980767, 961505180, 4073002563, 17253513691, 73087060144, 309601749709, 1311494066355, 5555578003196, 23533806098447, 99690802365743, 422297015611968, 1788878864731825
OFFSET
2,2
COMMENTS
An integral pentagon is a pentagon with integer sides and diagonals. There are two types of such pentagons. Type A have sides A066259(n+1), A220360(n+1), A066259(n+1), A220360(n+1), A066259(n+1), and opposite diagonals A056570(n+2), A056570(n+2), A220361(n+2), A056570(n+2), A056570(n+2), for n=1,2,...
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, D20.
LINKS
J. H. Jordan, B. E. Peterson, Almost regular integer Fibonacci pentagons, Rocky Mountain J. Math. Volume 23, Number 1 (1993), 243-247.
FORMULA
a(n) = 3*a(n-1)+6*a(n-2)-3*a(n-3)-a(n-4). G.f.: x^2*(x^2+4*x+1) / ((x^2-x-1)*(x^2+4*x-1)). - Colin Barker, Sep 23 2014
MAPLE
with(combinat): A220361:=n->fibonacci(n)^3+(-1)^n*fibonacci(n-2): seq(A220361(n), n=2..30); # Wesley Ivan Hurt, Apr 26 2017
MATHEMATICA
Table[Fibonacci[n]^3 + (-1)^n * Fibonacci[n - 2], {n, 2, 30}] (* T. D. Noe, Dec 13 2012 *)
LinearRecurrence[{3, 6, -3, -1}, {1, 7, 28, 123}, 30] (* Harvey P. Dale, Jul 13 2021 *)
PROG
(PARI) Vec(x^2*(x^2+4*x+1)/((x^2-x-1)*(x^2+4*x-1)) + O(x^100)) \\ Colin Barker, Sep 23 2014
(PARI) a(n) = fibonacci(n)^3 + (-1)^n*fibonacci(n-2) \\ Charles R Greathouse IV, Feb 14 2017
CROSSREFS
Sequence in context: A290913 A303406 A054626 * A219737 A316106 A359203
KEYWORD
nonn,easy
AUTHOR
Michel Marcus, Dec 12 2012
STATUS
approved