login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220360
a(n) = Fibonacci(n-1) * Fibonacci(n+1) * Fibonacci(n+2).
2
0, 6, 15, 80, 312, 1365, 5712, 24310, 102795, 435744, 1845360, 7817849, 33115680, 140282310, 594242103, 2517255280, 10663255848, 45170290605, 191344398960, 810547917686, 3433536019155, 14544692076096, 61612304191200, 260993909055025, 1105587940064832
OFFSET
1,2
COMMENTS
An integral pentagon is a pentagon with integer sides and diagonals. There are two types of such pentagons.
Type A have sides A066259(n+1), a(n+1), A066259(n+1), a(n+1), A066259(n+1), and opposite diagonals A056570(n+2), A056570(n+2), A220361(n+2), A056570(n+2), A056570(n+2), for n=1,2,...
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, D20.
LINKS
J. H. Jordan, B. E. Peterson, Almost regular integer Fibonacci pentagons, Rocky Mountain J. Math. Volume 23, Number 1 (1993), 243-247.
FORMULA
G.f.: (6*x - 3*x^2 - x^3)/(1 - 3*x - 6*x^2 + 3*x^3 + x^4); a(n) = 3*a(n-1) + 6*a(n-2) - 3*a(n-3) - a(n-4). [Ron Knott, Jun 27 2013]
Sum {n >= 2} 1/a(n) = 1/4. - Peter Bala, Nov 30 2013
a(n) = 4*(-1)^n*F(n-1)/5 + (-1)^n*F(n) + F(3*n+2)/5 with F=A000045. - Ehren Metcalfe, Mar 26 2016
MATHEMATICA
Table[Fibonacci[n - 1]*Fibonacci[n + 1]*Fibonacci[n + 2], {n, 30}] (* T. D. Noe, Dec 13 2012 *)
#[[1]]#[[3]]#[[4]]&/@Partition[Fibonacci[Range[0, 30]], 4, 1] (* Harvey P. Dale, Apr 08 2022 *)
PROG
(PARI) a(n) = fibonacci(n-1) * fibonacci(n+1) * fibonacci(n+2); \\ Michel Marcus, Mar 26 2016
(PARI) x='x+O('x^99); concat(0, Vec((6*x-3*x^2-x^3)/(1-3*x-6*x^2+3*x^3+x^4))) \\ Altug Alkan, Mar 26 2016
CROSSREFS
Cf. A000045.
Sequence in context: A232170 A165570 A260117 * A096565 A013229 A013225
KEYWORD
nonn
AUTHOR
Michel Marcus, Dec 12 2012
STATUS
approved