OFFSET
2,1
COMMENTS
Presumably, lim_{n->infinity} a(n)/A049363(n) = 1.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 2..28 (n = 2..22 from Jon E. Schoenfield)
EXAMPLE
Using the letters a, b, c, ... to represent digit values 10, 11, 12, ..., the terms are as follows:
.
n a(n) in base 10 a(n) in base n
== ========================= ==============
2 6 110_2
3 15 120_3
4 78 1032_4
5 990 12430_5
6 8385 102453_6
7 128271 1042653_7
8 2293011 10576423_8
9 46923828 107258346_9
10 1062489753 1062489753_10
11 27403863105 10692847a53_11
12 757016521030 10286b37459a_12
13 24028339652778 1053b2a49c786_13
14 807863408487460 1036cb2487d59a_14
15 29499468896141965 102568d3be749ca_15
16 1162871296355724735 102359486ac7edbf_16
17 49093065731151773880 1029a46d78g53cbef_17
18 2200689210818047715703 10237c486geh5bdaf9_18
19 104755000778178115071015 10236a47589cgdfeibh_19
20 5271254575974180914006953 10235i96e4jb8gfcah7d_20
PROG
(PARI) A049363(n)=if(n>1, (n^n-n)/(n-1)^2+n^(n-2)*(n-1)-1, 1)
a(n)=my(k=ceil((sqrt(8*A049363(n)+1)-1)/2), t); while(#Set(digits(t=binomial(k+1, 2), n))<n, k++); t \\ Charles R Greathouse IV, Jul 17 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Jon E. Schoenfield, Jul 17 2015
STATUS
approved