login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108540
Golden semiprimes: a(n)=p*q and abs(p*phi-q)<1, where phi = golden ratio = (1+sqrt(5))/2.
17
6, 15, 77, 187, 589, 851, 1363, 2183, 2747, 7303, 10033, 15229, 16463, 17201, 18511, 27641, 35909, 42869, 45257, 53033, 60409, 83309, 93749, 118969, 124373, 129331, 156433, 201563, 217631, 232327, 237077, 255271, 270349, 283663, 303533, 326423
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Eric Weisstein's World of Mathematics, Golden Ratio
Eric Weisstein's World of Mathematics, Semiprime
FORMULA
a(n) = A108541(n)*A108542(n) = A000040(k)*A108539(k) for some k.
EXAMPLE
589 = 19*31 and abs(19*phi - 31) = abs(30,7426... - 31) < 1, therefore 589 is a term.
MATHEMATICA
f[p_] := Module[{x = GoldenRatio * p}, p1 = NextPrime[x, -1]; p2 = NextPrime[p1]; q = If[x - p1 < p2 - x, p1, p2]; If[Abs[q - x] < 1, q, 0]]; seq = {}; p=1; Do[p = NextPrime[p]; q = f[p]; If[q > 0, AppendTo[seq, p*q]], {100}]; seq (* Amiram Eldar, Nov 28 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jun 09 2005; revised Jun 13 2005
EXTENSIONS
Corrected by T. D. Noe, Oct 25 2006
STATUS
approved