login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108537
Concatenation of palindrome k and its 10's complement is prime.
1
1, 3, 7, 77, 99, 151, 161, 333, 707, 727, 737, 757, 949, 969, 989, 1441, 1551, 1771, 1881, 3003, 7227, 7667, 7997, 9009, 9339, 9999, 10001, 10101, 10701, 11111, 11611, 11711, 12221, 12921, 13231, 14341, 14841, 14941, 15851, 16661, 16961, 17071
OFFSET
1,2
COMMENTS
Contains 10^k-1 for k in A056696, and (10^k-1)/9 for k in A108966. - Robert Israel, Jan 22 2019
LINKS
EXAMPLE
a(7)=161 because 1000-161 = 839 and 161839 is prime.
MAPLE
N:= 5: # for terms of <= N digits
digrev:= proc(n) local L, i;
L:= convert(n, base, 10);
add(L[-i]*10^(i-1), i=1..nops(L))
end proc:
Res:= 1, 3, 7, 9:
for d from 2 to N do
if d::even then
m:= d/2;
Res:= Res, seq(seq((i*10^(m-1)+j)*10^m + digrev(i*10^(m-1)+j), j=0..10^(m-1)-1), i=[1, 3, 7, 9]);
else
m:= (d-1)/2;
Res:= Res, seq(seq(seq((i*10^(m-1)+j)*10^(m+1)+y*10^m+digrev(i*10^(m-1)+j), y=0..9), j=0..10^(m-1)-1), i=[1, 3, 7, 9]);
fi
od:
filter:= proc(t) local r;
r:= 10^(ilog10(t)+1)-t;
isprime(t*10^(ilog10(r)+1)+r)
end proc:
select(filter, [Res]); # Robert Israel, Jan 22 2019
CROSSREFS
Sequence in context: A234536 A103737 A354480 * A364660 A219292 A181554
KEYWORD
base,easy,nonn
AUTHOR
Jason Earls, Jul 25 2005
STATUS
approved