login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103737 Define a(1)=0, a(2)=0, a(3)=3, a(4)=7 such that from i=1 to 4: 30*a(i)^2 + 30*a(i) + 1 = j(i)^2, j(1)=1, j(2)=1, j(3)=19, j(4)=41 Then a(n) = a(n-4) + 4*sqrt(30*(a(n-2)^2) + 30*a(n-2) + 1). 2
0, 0, 3, 7, 76, 164, 1679, 3611, 36872, 79288, 809515, 1740735, 17772468, 38216892, 390184791, 839030899, 8566292944, 18420462896, 188068259987, 404411152823, 4128935426780, 8878624899220, 90648511129183, 194925336630027, 1990138309415256, 4279478780961384, 43692394296006459 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

By construction and recurrence, 30*a(n)^2 + 30*a(n) + 1 = j(n)^2.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

FORMULA

G.f.: x^3*(3*x^2+4*x+3)/((1-x)*(x^4-22*x^2+1)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009

MATHEMATICA

Rest[CoefficientList[Series[x^3*(3*x^2+4*x+3)/((1-x)*(x^4-22*x^2+1)), {x, 0, 50}], x]] (* G. C. Greubel, Jul 15 2018 *)

PROG

(PARI) x='x+O('x^30); concat([0, 0], Vec(x^3*(3*x^2+4*x+3)/((1-x)*(x^4-22*x^2+1)))) \\ G. C. Greubel, Jul 15 2018

(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); [0, 0] cat Coefficients(R!(x^3*(3*x^2+4*x+3)/((1-x)*(x^4-22*x^2+1)))); // G. C. Greubel, Jul 15 2018

CROSSREFS

Cf. A053141, A103200.

Sequence in context: A172995 A325476 A234536 * A354480 A108537 A219292

Adjacent sequences: A103734 A103735 A103736 * A103738 A103739 A103740

KEYWORD

nonn

AUTHOR

Pierre CAMI, Mar 27 2005

EXTENSIONS

Terms a(19) onward added by G. C. Greubel, Jul 15 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 02:32 EST 2022. Contains 358431 sequences. (Running on oeis4.)