login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103739
Primes which are half the sum of 2 squares of primes.
15
17, 29, 37, 73, 89, 97, 109, 149, 157, 193, 229, 241, 269, 277, 349, 409, 433, 541, 601, 661, 709, 769, 829, 853, 929, 937, 1009, 1021, 1069, 1109, 1117, 1129, 1249, 1321, 1409, 1429, 1489, 1549, 1609, 1669, 1753, 1789, 1801, 1873, 2029, 2089, 2161, 2221
OFFSET
1,1
COMMENTS
Primes of the form x^2 + y^2, where x > y > 0, such that x-y = p and x+y = q are primes. Proof: (p^2+q^2)/2 = ((x-y)^2+(x+y)^2)/2 = x^2+y^2 so we have x = (p+q)/2 and y = (q-p)/2. - Thomas Ordowski, Sep 24 2012
All terms == 1 or 5 (mod 12). - Thomas Ordowski, Jun 28 2013
Or, primes in A143850. - Zak Seidov, Jun 06 2015
EXAMPLE
17 is in the sequence because (3^2 + 5^2) / 2 = 17.
MAPLE
Primes:= select(isprime, [seq(2*i+1, i=1..400)]):
Psq:= map(`^`, Primes, 2):
M:= max(Psq):
S:= select(t -> t <= M/2 and isprime(t), {seq(seq((Psq[i]+Psq[j])/2, j=1..i-1), i=1..nops(Psq))}):
sort(convert(S, list)); # Robert Israel, Jun 08 2015
PROG
(PARI) list(lim)=my(v=List(), p2, t); lim\=1; if(lim<9, lim=9); forprime(p=3, sqrtint(2*lim-9), p2=p^2; forprime(q=3, min(sqrtint(2*lim-p2), p), if(isprime(t=(p2+q^2)/2), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Feb 14 2017
CROSSREFS
Intersection of A143850 and A000040.
Sequence in context: A266965 A081985 A087937 * A255871 A196668 A096785
KEYWORD
easy,nonn
AUTHOR
Giovanni Teofilatto, Mar 28 2005
EXTENSIONS
Corrected and extended by Walter Nissen, Jul 19 2005
STATUS
approved