|
|
A172995
|
|
Numbers k such that (3^k + 7)/2 is prime.
|
|
2
|
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The primes are in A172996.
Naturally these numbers are odd since 3^(2*k) + 7 = (8+1)^k + 7 == 0 (mod 8). - Bruno Berselli, Oct 08 2012
For n <= 9, (3^a(n) + 7)/2 has been proved prime using PARI's ECPP; a(10) corresponds to a BPSW PRP. a(11) > 10^5. - Lucas A. Brown, Feb 10 2021
|
|
LINKS
|
Table of n, a(n) for n=1..10.
Lucas A. Brown, A172995.py
|
|
MATHEMATICA
|
Select[Range[5000], PrimeQ[(3^# + 7) / 2 ]&] (* Vincenzo Librandi, Oct 05 2012 *)
|
|
PROG
|
(PARI) is(n)=ispseudoprime((3^n+7)/2) \\ Charles R Greathouse IV, Jun 13 2017
|
|
CROSSREFS
|
Sequence in context: A075611 A191485 A119572 * A325476 A234536 A103737
Adjacent sequences: A172992 A172993 A172994 * A172996 A172997 A172998
|
|
KEYWORD
|
nonn,hard,more
|
|
AUTHOR
|
Vincenzo Librandi, Feb 07 2010
|
|
EXTENSIONS
|
a(7)-(9) from Vincenzo Librandi, Oct 05 2012
a(10) from Lucas A. Brown, Feb 10 2021
|
|
STATUS
|
approved
|
|
|
|