OFFSET
1,2
COMMENTS
Conjecture: a(n) exists for any n > 0. In general, if a,b,c and m are integers with a > 0, gcd(a,b,c-m) = 1 and c == (a+b+1)*(m+1) (mod 2) such that b^2-4a*(c-m) is not a square and gcd(a*m-b,b^2+b-a*c-1) is not divisible by 3, then for any positive integer n there are two elements x and y of the set {prime(k*n)+m: k = 1,2,3,...} with a*x^2+b*x+c = y.
This implies the conjecture in A259731.
REFERENCES
Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..100
Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
EXAMPLE
a(3) = 14 since (prime(14*3)-1)^2 = 180^2 = prime(3477)-1 = prime(1159*3)-1.
a(63) = 5162 since (prime(5162*63)-1)^2 = 4642456^2 = 21552397711936 = prime(726521033763)-1 = prime(11532079901*63)-1.
MATHEMATICA
P[n_, p_]:=PrimeQ[p]&&Mod[PrimePi[p], n]==0
Do[k=0; Label[aa]; k=k+1; If[P[n, (Prime[k*n]-1)^2+1], Goto[bb]]; Goto[aa]; Label[bb]; Print[n, " ", k]; Continue, {n, 1, 60}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jul 17 2015
STATUS
approved