login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349877
a(n) is the number of times the map x -> A353314(x) needs to be applied to n to reach a multiple of 3, or -1 if the trajectory never reaches a multiple of 3.
5
0, 2, 14, 0, 1, 13, 0, 4, 1, 0, 12, 3, 0, 1, 3, 0, 4, 1, 0, 11, 2, 0, 1, 2, 0, 2, 1, 0, 2, 3, 0, 1, 3, 0, 10, 1, 0, 4, 5, 0, 1, 7, 0, 3, 1, 0, 3, 2, 0, 1, 2, 0, 2, 1, 0, 2, 4, 0, 1, 9, 0, 3, 1, 0, 3, 4, 0, 1, 5, 0, 6, 1, 0, 4, 2, 0, 1, 2, 0, 2, 1, 0, 2, 7, 0, 1, 4, 0, 6, 1, 0, 6, 3, 0, 1, 3, 0, 5, 1, 0, 8, 2, 0
OFFSET
0,2
COMMENTS
Equally, number of iterations of A353313 needed to reach a multiple of 3, or -1 if no multiple of 3 is ever reached. - Antti Karttunen, Apr 14 2022
LINKS
FORMULA
From Antti Karttunen, Apr 14 2022: (Start)
If A010872(n) = 0 then a(n) = 0, otherwise a(n) = 1 + a(A353314(n)).
a(n) < A353311(n) for all n.
(End)
EXAMPLE
a(1) = 2 : 1 -> 4 -> 9 (as it takes two applications of A353314 to reach a multiple of three),
a(2) = 14 : 2 -> 5 -> 10 -> 19 -> 34 -> 59 -> 100 -> 169 -> 284 -> 475 -> 794 -> 1325 -> 2210 -> 3685 -> 6144
a(3) = 0 : 3 (as the starting point 3 is already a multiple of 3).
a(4) = 1 : 4 -> 9
a(7) = 4 : 7 -> 14 -> 25 -> 44 -> 75.
PROG
(Python)
import itertools
def f(n):
for i in itertools.count():
quot, rem = divmod(n, 3)
if rem == 0:
return i
n = (5 * quot) + rem + 3
(PARI)
A353314(n) = { my(r=(n%3)); if(!r, n, ((5*((n-r)/3)) + r + 3)); };
A349877(n) = { my(k=0); while(n%3, k++; n = A353314(n)); (k); }; \\ Antti Karttunen, Apr 14 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Nicholas Drozd, Dec 03 2021
EXTENSIONS
Definition corrected and more terms from Antti Karttunen, Apr 14 2022
STATUS
approved