login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A349877 a(n) is the number of times the map x -> A353314(x) needs to be applied to n to reach a multiple of 3, or -1 if the trajectory never reaches a multiple of 3. 5
0, 2, 14, 0, 1, 13, 0, 4, 1, 0, 12, 3, 0, 1, 3, 0, 4, 1, 0, 11, 2, 0, 1, 2, 0, 2, 1, 0, 2, 3, 0, 1, 3, 0, 10, 1, 0, 4, 5, 0, 1, 7, 0, 3, 1, 0, 3, 2, 0, 1, 2, 0, 2, 1, 0, 2, 4, 0, 1, 9, 0, 3, 1, 0, 3, 4, 0, 1, 5, 0, 6, 1, 0, 4, 2, 0, 1, 2, 0, 2, 1, 0, 2, 7, 0, 1, 4, 0, 6, 1, 0, 6, 3, 0, 1, 3, 0, 5, 1, 0, 8, 2, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Equally, number of iterations of A353313 needed to reach a multiple of 3, or -1 if no multiple of 3 is ever reached. - Antti Karttunen, Apr 14 2022
LINKS
FORMULA
From Antti Karttunen, Apr 14 2022: (Start)
If A010872(n) = 0 then a(n) = 0, otherwise a(n) = 1 + a(A353314(n)).
a(n) < A353311(n) for all n.
(End)
EXAMPLE
a(1) = 2 : 1 -> 4 -> 9 (as it takes two applications of A353314 to reach a multiple of three),
a(2) = 14 : 2 -> 5 -> 10 -> 19 -> 34 -> 59 -> 100 -> 169 -> 284 -> 475 -> 794 -> 1325 -> 2210 -> 3685 -> 6144
a(3) = 0 : 3 (as the starting point 3 is already a multiple of 3).
a(4) = 1 : 4 -> 9
a(7) = 4 : 7 -> 14 -> 25 -> 44 -> 75.
PROG
(Python)
import itertools
def f(n):
for i in itertools.count():
quot, rem = divmod(n, 3)
if rem == 0:
return i
n = (5 * quot) + rem + 3
(PARI)
A353314(n) = { my(r=(n%3)); if(!r, n, ((5*((n-r)/3)) + r + 3)); };
A349877(n) = { my(k=0); while(n%3, k++; n = A353314(n)); (k); }; \\ Antti Karttunen, Apr 14 2022
CROSSREFS
Sequence in context: A219221 A249510 A324219 * A196815 A260120 A221234
KEYWORD
nonn,easy
AUTHOR
Nicholas Drozd, Dec 03 2021
EXTENSIONS
Definition corrected and more terms from Antti Karttunen, Apr 14 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 02:18 EST 2023. Contains 367681 sequences. (Running on oeis4.)