|
|
A349877
|
|
a(n) is the number of times the map x -> A353314(x) needs to be applied to n to reach a multiple of 3, or -1 if the trajectory never reaches a multiple of 3.
|
|
5
|
|
|
0, 2, 14, 0, 1, 13, 0, 4, 1, 0, 12, 3, 0, 1, 3, 0, 4, 1, 0, 11, 2, 0, 1, 2, 0, 2, 1, 0, 2, 3, 0, 1, 3, 0, 10, 1, 0, 4, 5, 0, 1, 7, 0, 3, 1, 0, 3, 2, 0, 1, 2, 0, 2, 1, 0, 2, 4, 0, 1, 9, 0, 3, 1, 0, 3, 4, 0, 1, 5, 0, 6, 1, 0, 4, 2, 0, 1, 2, 0, 2, 1, 0, 2, 7, 0, 1, 4, 0, 6, 1, 0, 6, 3, 0, 1, 3, 0, 5, 1, 0, 8, 2, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Equally, number of iterations of A353313 needed to reach a multiple of 3, or -1 if no multiple of 3 is ever reached. - Antti Karttunen, Apr 14 2022
|
|
LINKS
|
|
|
FORMULA
|
(End)
|
|
EXAMPLE
|
a(1) = 2 : 1 -> 4 -> 9 (as it takes two applications of A353314 to reach a multiple of three),
a(2) = 14 : 2 -> 5 -> 10 -> 19 -> 34 -> 59 -> 100 -> 169 -> 284 -> 475 -> 794 -> 1325 -> 2210 -> 3685 -> 6144
a(3) = 0 : 3 (as the starting point 3 is already a multiple of 3).
a(4) = 1 : 4 -> 9
a(7) = 4 : 7 -> 14 -> 25 -> 44 -> 75.
|
|
PROG
|
(Python)
import itertools
def f(n):
for i in itertools.count():
quot, rem = divmod(n, 3)
if rem == 0:
return i
n = (5 * quot) + rem + 3
(PARI)
A353314(n) = { my(r=(n%3)); if(!r, n, ((5*((n-r)/3)) + r + 3)); };
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|