|
|
A049363
|
|
a(1) = 1; for n>1, smallest digitally balanced number in base n.
|
|
21
|
|
|
1, 2, 11, 75, 694, 8345, 123717, 2177399, 44317196, 1023456789, 26432593615, 754777787027, 23609224079778, 802772380556705, 29480883458974409, 1162849439785405935, 49030176097150555672, 2200618769387072998445, 104753196945250864004691, 5271200265927977839335179
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
A037968(a(n)) = n and A037968(m) < n for m < a(n). - Reinhard Zumkeller, Oct 27 2003
Also smallest pandigital number in base n. - Franklin T. Adams-Watters, Nov 15 2006
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 1..250
Eric Weisstein's World of Mathematics, Pandigital Number
Wikipedia, Pandigital number
|
|
FORMULA
|
a(n) = (102345....n-1) in base n. - Ulrich Schimke (ulrschimke(AT)aol.com)
For n>1, a(n) = (n^n-n)/(n-1)^2 + n^(n-2)*(n-1) - 1 = A023811(n) + A053506(n). - Franklin T. Adams-Watters, Nov 15 2006
|
|
EXAMPLE
|
a(6) = (102345) in base 6 = 6^5 + 2*6^3 + 3*6^2 + 4*6 + 5 = 8345.
|
|
MAPLE
|
a:= n-> n^(n-1)+add((n-i)*n^(i-1), i=1..n-2):
seq(a(n), n=1..23); # Alois P. Heinz, May 02 2020
|
|
MATHEMATICA
|
Table[FromDigits[Join[{1, 0}, Range[2, n-1]], n], {n, 20}] (* Harvey P. Dale, Oct 12 2012 *)
|
|
PROG
|
(PARI) A049363(n)=n^(n-1)+sum(i=1, n-2, n^(i-1)*(n-i)) \\ M. F. Hasler, Jan 10 2012
(PARI) A049363(n)=if(n>1, (n^n-n)/(n-1)^2+n^(n-2)*(n-1)-1, 1) \\ M. F. Hasler, Jan 12 2012
(Haskell)
a049363 n = foldl (\v d -> n * v + d) 0 (1 : 0 : [2..n-1])
-- Reinhard Zumkeller, Apr 04 2012
|
|
CROSSREFS
|
Column k=1 of A061845 (for n>1).
Cf. A031443, A049354, A049355, A023811.
Sequence in context: A198088 A112894 A220878 * A055085 A209101 A118802
Adjacent sequences: A049360 A049361 A049362 * A049364 A049365 A049366
|
|
KEYWORD
|
nonn,base,nice
|
|
AUTHOR
|
Harvey P. Dale
|
|
EXTENSIONS
|
More terms from Ulrich Schimke (ulrschimke(AT)aol.com)
|
|
STATUS
|
approved
|
|
|
|