login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049363 a(1) = 1; for n>1, smallest digitally balanced number in base n. 20

%I

%S 1,2,11,75,694,8345,123717,2177399,44317196,1023456789,26432593615,

%T 754777787027,23609224079778,802772380556705,29480883458974409,

%U 1162849439785405935,49030176097150555672,2200618769387072998445

%N a(1) = 1; for n>1, smallest digitally balanced number in base n.

%C A037968(a(n)) = n and A037968(m) < n for m < a(n). - _Reinhard Zumkeller_, Oct 27 2003

%C Also smallest pandigital number in base n. - _Franklin T. Adams-Watters_, Nov 15 2006

%H Reinhard Zumkeller, <a href="/A049363/b049363.txt">Table of n, a(n) for n = 1..250</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PandigitalNumber.html">Pandigital Number</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Pandigital_number">Pandigital number</a>

%F a(n) = (102345....n-1) in base n. - Ulrich Schimke (ulrschimke(AT)aol.com)

%F For n>1, a(n) = (n^n-n)/(n-1)^2 + n^(n-2)*(n-1) - 1 = A023811(n) + A053506(n). - _Franklin T. Adams-Watters_, Nov 15 2006

%e a(6) = (102345) in base 6 = 6^5 + 2*6^3 + 3*6^2 + 4*6 + 5 = 8345.

%t Table[FromDigits[Join[{1,0},Range[2,n-1]],n],{n,20}] (* _Harvey P. Dale_, Oct 12 2012 *)

%o (PARI) A049363(n)=n^(n-1)+sum(i=1,n-2,n^(i-1)*(n-i)) \\ _M. F. Hasler_, Jan 10 2012

%o (PARI) A049363(n)=if(n>1,(n^n-n)/(n-1)^2+n^(n-2)*(n-1)-1,1) \\ _M. F. Hasler_, Jan 12 2012

%o (Haskell)

%o a049363 n = foldl (\v d -> n * v + d) 0 (1 : 0 : [2..n-1])

%o -- _Reinhard Zumkeller_, Apr 04 2012

%Y Cf. A031443, A049354, A049355, A023811.

%K nonn,base,nice

%O 1,2

%A _Harvey P. Dale_

%E More terms from Ulrich Schimke (ulrschimke(AT)aol.com)

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 1 05:04 EDT 2020. Contains 333155 sequences. (Running on oeis4.)