login
A220363
a(n) = Fibonacci(n)^3 + (-1)^n*Fibonacci(n+2).
2
1, -1, 4, 3, 35, 112, 533, 2163, 9316, 39215, 166519, 704736, 2986361, 12648727, 53583620, 226979403, 961507387, 4072998992, 17253519469, 73087050795, 309601764836, 1311494041879, 5555578042799, 23533806034368, 99690802469425, 422297015444207
OFFSET
0,3
COMMENTS
An integral pentagon is a pentagon with integer sides and diagonals. There are two types of such pentagons.
Type B have sides A056570(n+2), A056570(n+2), a(n+2), A056570(n+2), A056570(n+2), and opposite diagonals A220362(n+2), A066258(n+2), A066258(n+2), A066258(n+2), A220362(n+2), for n=1,2,...
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, D20.
LINKS
J. H. Jordan, B. E. Peterson, Almost regular integer Fibonacci pentagons, Rocky Mountain J. Math. Volume 23, Number 1 (1993), 243-247.
FORMULA
a(n) = 3*a(n-1)+6*a(n-2)-3*a(n-3)-a(n-4). G.f.: (x^2-4*x+1) / ((x^2-x-1)*(x^2+4*x-1)). - Colin Barker, Sep 23 2014
MATHEMATICA
Table[Fibonacci[n]^3 + (-1)^n * Fibonacci[n + 2], {n, 0, 30}] (* T. D. Noe, Dec 13 2012 *)
LinearRecurrence[{3, 6, -3, -1}, {1, -1, 4, 3}, 30] (* Harvey P. Dale, Mar 19 2022 *)
PROG
(PARI) Vec((x^2-4*x+1)/((x^2-x-1)*(x^2+4*x-1)) + O(x^100)) \\ Colin Barker, Sep 23 2014
(PARI) a(n) = fibonacci(n)^3 + (-1)^n*fibonacci(n+2) \\ Charles R Greathouse IV, Feb 14 2017
CROSSREFS
Sequence in context: A002178 A013558 A161000 * A120078 A096201 A275521
KEYWORD
sign,easy
AUTHOR
Michel Marcus, Dec 12 2012
STATUS
approved