login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054629
Number of n-bead necklaces with 10 colors.
3
1, 10, 55, 340, 2530, 20008, 166870, 1428580, 12501280, 111111340, 1000010044, 9090909100, 83333418520, 769230769240, 7142857857190, 66666666680272, 625000006251280, 5882352941176480, 55555555611222370, 526315789473684220
OFFSET
0,2
FORMULA
a(n) = (1/n)*Sum_{d|n} phi(d)*10^(n/d) = A054617(n)/n, n > 0.
G.f.: 1 - Sum_{n>=1} phi(n)*log(1 - 10*x^n)/n. - Herbert Kociemba, Nov 02 2016
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} 10^gcd(n,k). - Ilya Gutkovskiy, Apr 17 2021
EXAMPLE
G.f. = 1 + 10*x + 55*x^2 + 340*x^3 + 2530*x^4 + 20008*x^5 + 166870*x^6 + ...
MAPLE
with(combstruct):A:=[N, {N=Cycle(Union(Z$10))}, unlabeled]: seq(count(A, size=n), n=0..19); # Zerinvary Lajos, Dec 05 2007
MATHEMATICA
mx=40; CoefficientList[Series[1-Sum[EulerPhi[i] Log[1-10*x^i]/i, {i, 1, mx}], {x, 0, mx}], x] (* Herbert Kociemba, Nov 02 2016 *)
k=10; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/n, {n, 1, 30}], 1] (* Robert A. Russell, Sep 21 2018 *)
PROG
(PARI) a(n)=if(n==0, 1, 1/n*sumdiv(n, d, eulerphi(d)*10^(n/d))); \\ Altug Alkan, Sep 21 2018
CROSSREFS
Column 10 of A075195.
Cf. A054617.
Sequence in context: A316109 A188168 A199413 * A290359 A030114 A001557
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 16 2000
EXTENSIONS
Edited by Christian G. Bower, Sep 07 2002
a(0) corrected by Herbert Kociemba, Nov 02 2016
STATUS
approved