login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030114
Number of distributive lattices; also number of paths with n turns when light is reflected from 10 glass plates.
2
1, 10, 55, 385, 2530, 17017, 113641, 760804, 5089282, 34053437, 227837533, 1524414737, 10199443436, 68241935348, 456589252304, 3054922560820, 20439707165252, 136756870048981, 915005341022187, 6122067418010887, 40961191948244094, 274060890253820561
OFFSET
0,2
COMMENTS
Let M(10) be the 10 X 10 matrix (0,0,0,1)/(0,0,1,1)/(0,1,1,1)/(1,1,1,1) and let v(10) be the vector (1,1,1,1,1,1,1,1,1); then v(10)*M(10)^n = (x,y,z,t,u,v, w,m,a(n)) - Benoit Cloitre, Sep 29 2002
REFERENCES
J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
LINKS
J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
Index entries for linear recurrences with constant coefficients, signature (5,15,-20,-35,21,28,-8,-9,1,1).
FORMULA
G.f.: 1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1)))))))))) = -(x^9 +x^8 -8*x^7 -7*x^6 +21*x^5 +15*x^4 -20*x^3 -10*x^2 +5*x +1)/((x +1)*(x^3 +x^2 -2*x -1)*(x^6 -x^5 -6*x^4 +6*x^3 +8*x^2 -8*x +1)). [Colin Barker, Nov 09 2012]
MATHEMATICA
CoefficientList[Series[-(x^9 + x^8 - 8 x^7 - 7 x^6 + 21 x^5 + 15 x^4 - 20 x^3 - 10 x^2 + 5 x + 1)/((x + 1) (x^3 + x^2 - 2 x - 1) (x^6 - x^5 - 6 x^4 + 6 x^3 8 x^2 - 8 x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 19 2013 *)
PROG
(PARI) k=10; M(k)=matrix(k, k, i, j, if(1-sign(i+j-k), 0, 1)); v(k)=vector(k, i, 1); a(n)=vecmax(v(k)*M(k)^n)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jacques Haubrich (jhaubrich(AT)freeler.nl)
EXTENSIONS
More terms from Benoit Cloitre, Sep 29 2002
a(20)-a(21) from Vincenzo Librandi, Oct 19 2013
STATUS
approved