login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030111
Triangular array in which k-th entry in n-th row is C([ (n+k)/2 ],k) (1<=k<=n).
4
1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 3, 4, 1, 1, 3, 6, 4, 5, 1, 1, 4, 6, 10, 5, 6, 1, 1, 4, 10, 10, 15, 6, 7, 1, 1, 5, 10, 20, 15, 21, 7, 8, 1, 1, 5, 15, 20, 35, 21, 28, 8, 9, 1, 1, 6, 15, 35, 35, 56, 28, 36, 9, 10, 1, 1, 6, 21, 35, 70, 56, 84, 36, 45, 10, 11, 1, 1, 7, 21, 56, 70, 126, 84, 120, 45, 55, 11, 12, 1
OFFSET
1,4
COMMENTS
Same as A046854, but missing the initial column of ones.
Riordan array (1/((1-x)(1-x^2)),x/(1-x^2)). Diagonal sums are A052551. - Paul Barry, Sep 30 2006
LINKS
Indranil Ghosh, Rows 0..125, flattened
FORMULA
G.f.: 1 / (1 - x - xy - x^2 + x^2y + x^3). - Ralf Stephan, Feb 13 2005
Sum(k=1, n, T(n, k)) = F(n+2)-1 where F(n) is the n-th Fibonacci number. - Benoit Cloitre, Oct 07 2002
EXAMPLE
1;
1 1;
2 1 1;
2 3 1 1;
3 3 4 1 1;
3 6 4 5 1 1;
...
MATHEMATICA
Flatten[Table[Binomial[Floor[(n+k)/2], k], {n, 20}, {k, n}]] (* Harvey P. Dale, Jun 03 2014 *)
PROG
(PARI) {T(n, k) = binomial((n+k)\2, k)}; /* Michael Somos, Jul 23 1999 */
(PARI) printp(matrix(8, 8, n, k, binomial((n+k)\2, k)))
(PARI) for(n=1, 7, for(k=1, n, print1(binomial((n+k)\2, k)); if(k==n, print1("; ")); print1(" ")))
CROSSREFS
Cf. A066170.
Sequence in context: A157744 A335545 A334997 * A096921 A308203 A275416
KEYWORD
tabl,nonn
AUTHOR
Jacques Haubrich (jhaubrich(AT)freeler.nl)
EXTENSIONS
Description corrected by Michael Somos, Jul 23 1999
Corrected and extended by Harvey P. Dale, Jun 03 2014
STATUS
approved