OFFSET
1,4
COMMENTS
Same as A046854, but missing the initial column of ones.
Riordan array (1/((1-x)(1-x^2)),x/(1-x^2)). Diagonal sums are A052551. - Paul Barry, Sep 30 2006
LINKS
Indranil Ghosh, Rows 0..125, flattened
FORMULA
G.f.: 1 / (1 - x - xy - x^2 + x^2y + x^3). - Ralf Stephan, Feb 13 2005
Sum(k=1, n, T(n, k)) = F(n+2)-1 where F(n) is the n-th Fibonacci number. - Benoit Cloitre, Oct 07 2002
EXAMPLE
1;
1 1;
2 1 1;
2 3 1 1;
3 3 4 1 1;
3 6 4 5 1 1;
...
MATHEMATICA
Flatten[Table[Binomial[Floor[(n+k)/2], k], {n, 20}, {k, n}]] (* Harvey P. Dale, Jun 03 2014 *)
PROG
(PARI) {T(n, k) = binomial((n+k)\2, k)}; /* Michael Somos, Jul 23 1999 */
(PARI) printp(matrix(8, 8, n, k, binomial((n+k)\2, k)))
(PARI) for(n=1, 7, for(k=1, n, print1(binomial((n+k)\2, k)); if(k==n, print1("; ")); print1(" ")))
CROSSREFS
KEYWORD
tabl,nonn
AUTHOR
Jacques Haubrich (jhaubrich(AT)freeler.nl)
EXTENSIONS
Description corrected by Michael Somos, Jul 23 1999
Corrected and extended by Harvey P. Dale, Jun 03 2014
STATUS
approved