Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Feb 19 2017 03:30:23
%S 1,1,1,2,1,1,2,3,1,1,3,3,4,1,1,3,6,4,5,1,1,4,6,10,5,6,1,1,4,10,10,15,
%T 6,7,1,1,5,10,20,15,21,7,8,1,1,5,15,20,35,21,28,8,9,1,1,6,15,35,35,56,
%U 28,36,9,10,1,1,6,21,35,70,56,84,36,45,10,11,1,1,7,21,56,70,126,84,120,45,55,11,12,1
%N Triangular array in which k-th entry in n-th row is C([ (n+k)/2 ],k) (1<=k<=n).
%C Same as A046854, but missing the initial column of ones.
%C Riordan array (1/((1-x)(1-x^2)),x/(1-x^2)). Diagonal sums are A052551. - _Paul Barry_, Sep 30 2006
%H Indranil Ghosh, <a href="/A030111/b030111.txt">Rows 0..125, flattened</a>
%F G.f.: 1 / (1 - x - xy - x^2 + x^2y + x^3). - _Ralf Stephan_, Feb 13 2005
%F Sum(k=1, n, T(n, k)) = F(n+2)-1 where F(n) is the n-th Fibonacci number. - _Benoit Cloitre_, Oct 07 2002
%e 1;
%e 1 1;
%e 2 1 1;
%e 2 3 1 1;
%e 3 3 4 1 1;
%e 3 6 4 5 1 1;
%e ...
%t Flatten[Table[Binomial[Floor[(n+k)/2],k],{n,20},{k,n}]] (* _Harvey P. Dale_, Jun 03 2014 *)
%o (PARI) {T(n, k) = binomial((n+k)\2, k)}; /* _Michael Somos_, Jul 23 1999 */
%o (PARI) printp(matrix(8,8,n,k,binomial((n+k)\2,k)))
%o (PARI) for(n=1,7, for(k=1,n,print1(binomial((n+k)\2,k)); if(k==n,print1("; ")); print1(" ")))
%Y Cf. A066170.
%K tabl,nonn
%O 1,4
%A Jacques Haubrich (jhaubrich(AT)freeler.nl)
%E Description corrected by _Michael Somos_, Jul 23 1999
%E Corrected and extended by _Harvey P. Dale_, Jun 03 2014