login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096921
Triangle array of binomial coefficients.
1
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 3, 6, 1, 1, 3, 4, 6, 10, 1, 1, 4, 4, 10, 10, 20, 1, 1, 4, 5, 10, 15, 20, 35, 1, 1, 5, 5, 15, 15, 35, 35, 70, 1, 1, 5, 6, 15, 21, 35, 56, 70, 126, 1, 1, 6, 6, 21, 21, 56, 56, 126, 126, 252, 1, 1, 6, 7, 21, 28, 56, 84, 126, 210, 252, 462
OFFSET
0,6
FORMULA
T(n, k) = binomial(floor((n+k)/2), floor(k/2)).
EXAMPLE
Triangle begins:
k=0 1 2 3 4 5
n=0: 1;
n=1: 1, 1;
n=2: 1, 1, 2;
n=3: 1, 1, 2, 3;
n=4: 1, 1, 3, 3, 6;
n=5: 1, 1, 3, 4, 6, 10;
...
MATHEMATICA
T[n_, k_]=Binomial[Floor[(n+k)/2], Floor[k/2]]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] (* Stefano Spezia, Aug 23 2022 *)
PROG
(PARI) T(n, k) = binomial((n+k)\2, k\2); \\ Michel Marcus, Oct 29 2022
CROSSREFS
Cf. A026010 (row sums), A016116 (diagonal sums), A001405 (main diagonal).
Sequence in context: A335545 A334997 A030111 * A308203 A275416 A037161
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Jul 15 2004
STATUS
approved