login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096920
Expansion of q^(-1/12) * eta(q^2)^4 / (eta(q)^2 * eta(q^4)) in powers of q.
2
1, 2, 1, 2, 3, 2, 4, 4, 4, 6, 7, 8, 8, 10, 11, 14, 16, 16, 20, 22, 24, 28, 32, 34, 39, 44, 48, 54, 60, 66, 73, 82, 88, 98, 108, 118, 132, 144, 156, 172, 188, 204, 224, 244, 265, 290, 316, 340, 372, 404, 436, 474, 513, 554, 600, 650, 700, 756, 816, 878, 948, 1022, 1096, 1182
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
a(n) = b(n)+b(n-1)+b(n-3)+b(n-6)+...+b(n-k*(k+1)/2)+..., where b() is A000700(). E.g., a(8) = b(8)+b(7)+b(5)+b(2) = 2+1+1+0 = 4.
G.f.: Product_{k>0} (1 - x^(4*k)) * (1 + x^(2*k-1))^2. - Michael Somos, Mar 25 2008
Expansion of psi(q) * chi(q) = f(q) / chi(-q) = f(q)^2 / phi(-q^2) = phi(-q^2) / chi(-q)^2 = phi(q) / chi(-q^2) = psi(q)^2 / f(-q^4) = f(-q^4) * chi(q)^2 where phi(), psi(), chi(), f() are Ramanujan theta functions.
Euler transform of period 4 sequence [ 2, -2, 2, -1, ...]. - Michael Somos, Mar 25 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (576 t)) = 12^(1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A138559.
a(n) ~ exp(Pi*sqrt(n/6)) / (2*sqrt(2*n)). - Vaclav Kotesovec, Sep 07 2015
EXAMPLE
q + 2*q^13 + q^25 + 2*q^37 + 3*q^49 + 2*q^61 + 4*q^73 + 4*q^85 + 4*q^97 + ...
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[(1 - x^(4*k)) * (1 + x^(2*k-1))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)
eta[q_]:= q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q^(-1/12) *eta[q^2]^4/(eta[q]^2*eta[q^4]), {q, 0, 50}], q]; Table[a[[n]], {n, 0, 50}] (* G. C. Greubel, May 09 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 / eta(x + A)^2 / eta(x^4 + A), n))} /* Michael Somos, Mar 25 2008 */
CROSSREFS
Sequence in context: A080845 A290370 A029166 * A087154 A029839 A082304
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Aug 18 2004
STATUS
approved