login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157744
A recursion triangle sequence: A(n,k) = A(n-1,k-1)+e(n-1,k) where e(n,k)=Sum[(-1)^j Binomial[n + 1, j](k - j)^n, {j, 0, k}].
0
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 6, 4, 1, 1, 2, 13, 17, 5, 1, 1, 2, 28, 79, 43, 6, 1, 1, 2, 59, 330, 381, 100, 7, 1, 1, 2, 122, 1250, 2746, 1572, 220, 8, 1, 1, 2, 249, 4415, 16869, 18365, 5865, 467, 9, 1, 1, 2, 504, 14857, 92649, 173059, 106599, 20473, 969, 10, 1
OFFSET
0,5
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 470, Equation (38).
FORMULA
A(n,k) = A(n-1,k-1)+e(n-1,k) where e(n,k) = Sum[(-1)^j Binomial[n + 1, j](k - j)^n, {j, 0, k}].
EXAMPLE
{1},
{1, 1},
{1, 2, 1},
{1, 2, 3, 1},
{1, 2, 6, 4, 1},
{1, 2, 13, 17, 5, 1},
{1, 2, 28, 79, 43, 6, 1},
{1, 2, 59, 330, 381, 100, 7, 1},
{1, 2, 122, 1250, 2746, 1572, 220, 8, 1},
{1, 2, 249, 4415, 16869, 18365, 5865, 467, 9, 1},
{1, 2, 504, 14857, 92649, 173059, 106599, 20473, 969, 10, 1}
MATHEMATICA
Clear[e, A, n, k];
e[n_, k_] := Sum[(-1)^j Binomial[n + 1, j](k - j)^n, {j, 0, k}];
A[1, n_] := 1;
A[n_, n_] := 1;
A[n_, k_] := A[n - 1, k - 1] + e[n - 1, k];
Table[Table[A[n, k], {k, 0, n}], {n, 0, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A225641 A116855 A173265 * A335545 A334997 A030111
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved