login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157746
Expansion of 1/(x^11 + x^10 + x^6 + x^5 + x^4 + x^2 + 1).
0
1, 0, -1, 0, 0, -1, 0, 2, 1, -1, -1, -1, -1, 0, 2, 4, 2, -4, -6, -2, 0, 2, 10, 11, -4, -17, -14, -4, 7, 22, 30, 11, -31, -57, -35, 15, 56, 80, 64, -32, -152, -160, -28, 136, 240, 228, 29, -312, -521, -324, 208, 691, 784, 358, -523, -1401, -1417, -149, 1631, 2560, 1826, -492, -3366, -4692
OFFSET
0,8
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. xxxiii.
FORMULA
G.f.: 1/(x^11 + x^10 + x^6 + x^5 + x^4 + x^2 + 1).
a(n) + a(n-2) + a(n-4) + a(n-5) + a(n-6) + a(n-10) + a(n-11) = 0. - Wesley Ivan Hurt, Dec 29 2023
MATHEMATICA
f[x_] = 1 + x + x^5 + x^6 + x^7 + x^9 + x^11;
g[x] = ExpandAll[x^11*f[1/x]];
a = Table[SeriesCoefficient[ Series[1/g[x], {x, 0, 50}], n], {n, 0, 50}]
CROSSREFS
Sequence in context: A302354 A000164 A330261 * A349082 A281010 A316864
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula, Mar 05 2009
EXTENSIONS
New name, Joerg Arndt, Mar 20 2013
STATUS
approved