login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157741
a(n) = 388962*n^2 + 1764*n + 1.
3
390727, 1559377, 3505951, 6230449, 9732871, 14013217, 19071487, 24907681, 31521799, 38913841, 47083807, 56031697, 65757511, 76261249, 87542911, 99602497, 112440007, 126055441, 140448799, 155620081, 171569287, 188296417
OFFSET
1,1
COMMENTS
The identity (388962*n^2 + 1764*n + 1)^2 - (441*n^2 + 2*n)*(18522*n + 42)^2 = 1 can be written as a(n)^2 - A158321(n)*A157740(n)^2 = 1. - Vincenzo Librandi, Feb 05 2012
This is the case s=21 of the identity (2*n^2*s^4 + 4*n*s^2 + 1)^2 - (n^2*s^2 + 2*n)*(2*n*s^3 + 2*s)^2 = 1. - Vincenzo Librandi, Feb 05 2012
FORMULA
G.f.: x*(390727 + 387196*x + x^2)/(1-x)^3. - Vincenzo Librandi, Feb 05 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 05 2012
a(n) = 2*A158322(n)^2 - 1. - Bruno Berselli, Feb 05 2011
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {390727, 1559377, 3505951}, 50] (* Vincenzo Librandi, Feb 05 2012 *)
PROG
(Magma) I:=[390727, 1559377, 3505951]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 05 2012
(PARI) for(n=1, 40, print1(388962*n^2 + 1764*n + 1", ")); \\ Vincenzo Librandi, Feb 05 2012
CROSSREFS
Sequence in context: A017336 A017456 A017588 * A345612 A346329 A345622
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 05 2009
STATUS
approved