login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158321
a(n) = 441n^2 + 2n.
4
443, 1768, 3975, 7064, 11035, 15888, 21623, 28240, 35739, 44120, 53383, 63528, 74555, 86464, 99255, 112928, 127483, 142920, 159239, 176440, 194523, 213488, 233335, 254064, 275675, 298168, 321543, 345800, 370939, 396960, 423863, 451648
OFFSET
1,1
COMMENTS
The identity (441*n + 1)^2 - (441*n^2 + 2*n)*21^2 = 1 can be written as A158322(n)^2 - a(n)*21^2 = 1. - Vincenzo Librandi, Jan 24 2012
Also, the identity (388962*n^2 + 1764*n + 1)^2 - (441*n^2 + 2*n)*(18522*n + 42)^2 = 1 can be written as A157741(n)^2 - (n)*A157740(n)^2 = 1 (see the second comment at A157741). - Vincenzo Librandi, Feb 05 2012
LINKS
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(21^2*t+2)).
FORMULA
G.f.: x*(443+439*x)/(1-x)^3. - Vincenzo Librandi, Jan 24 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jan 24 2012
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {443, 1768, 3975}, 50] (* Vincenzo Librandi, Jan 24 2012 *)
PROG
(Magma) I:=[443, 1768, 3975]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
(PARI) a(n) = 441*n^2 + 2*n \\ Vincenzo Librandi, Jan 24 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 16 2009
STATUS
approved