OFFSET
1,1
COMMENTS
The identity (441*n + 1)^2 - (441*n^2 + 2*n)*21^2 = 1 can be written as A158322(n)^2 - a(n)*21^2 = 1. - Vincenzo Librandi, Jan 24 2012
Also, the identity (388962*n^2 + 1764*n + 1)^2 - (441*n^2 + 2*n)*(18522*n + 42)^2 = 1 can be written as A157741(n)^2 - (n)*A157740(n)^2 = 1 (see the second comment at A157741). - Vincenzo Librandi, Feb 05 2012
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(21^2*t+2)).
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
G.f.: x*(443+439*x)/(1-x)^3. - Vincenzo Librandi, Jan 24 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jan 24 2012
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {443, 1768, 3975}, 50] (* Vincenzo Librandi, Jan 24 2012 *)
PROG
(Magma) I:=[443, 1768, 3975]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
(PARI) a(n) = 441*n^2 + 2*n \\ Vincenzo Librandi, Jan 24 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 16 2009
STATUS
approved