login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017456
a(n) = (11*n + 5)^8.
12
390625, 4294967296, 282429536481, 4347792138496, 33232930569601, 167961600000000, 645753531245761, 2044140858654976, 5595818096650401, 13685690504052736, 30590228625390625, 63527879748485376, 124097929967680321, 230193853492166656, 408485828788939521
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (390625 +4291451671*x +243788893317*x^2 +1960512320323*x^3 +3909536602339*x^4 +2202777455589*x^5 +315080647543*x^6 +6960640897*x^7 +1679616*x^8)/(1-x)^9.
E.g.f.: (390625 +4294576671*x +136919996257*x^2 +585564673386*x^3 +729964989831*x^4 +353933730150*x^5 +74628778686*x^6 +6781535508*x^7 + 214358881*x^8)*exp(x). (End)
MAPLE
seq((11*n+5)^8, n=0..20); # G. C. Greubel, Sep 19 2019
MATHEMATICA
(11Range[0, 20]+5)^8 (* Harvey P. Dale, Apr 23 2011 *)
PROG
(Magma) [(11*n+5)^8: n in [0..20]]; // Vincenzo Librandi, Sep 03 2011
(PARI) vector(20, n, (11*n-6)^8) \\ G. C. Greubel, Sep 19 2019
(Sage) [(11*n+5)^8 for n in (0..20)] # G. C. Greubel, Sep 19 2019
(GAP) List([0..20], n-> (11*n+5)^8); # G. C. Greubel, Sep 19 2019
CROSSREFS
Powers of the form (11*n+5)^m: A017449 (m=1), A017450 (m=2), A017451 (m=3), A017452 (m=4), A017453 (m=5), A017454 (m=6), A017455 (m=7), this sequence (m=8), A017457 (m=9), A017458 (m=10), A017459 (m=11), A017460 (m=12).
Sequence in context: A017132 A017228 A017336 * A017588 A157741 A345612
KEYWORD
nonn,easy
STATUS
approved