login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157739
a(n) = 388962*n^2 - 1764*n + 1.
3
387199, 1552321, 3495367, 6216337, 9715231, 13992049, 19046791, 24879457, 31490047, 38878561, 47044999, 55989361, 65711647, 76211857, 87489991, 99546049, 112380031, 125991937, 140381767, 155549521, 171495199, 188218801
OFFSET
1,1
COMMENTS
The identity (388962*n^2 - 1764*n + 1)^2 - (441*n^2 - 2*n)*(18522*n - 42)^2 = 1 can be written as a(n)^2 - A157737(n)*A157738(n)^2 = 1. - Vincenzo Librandi, Jan 25 2012
This is the case s=21 of the identity (2*s^4*n^2 - 4*s^2*n + 1)^2 - (s^2*n^2 - 2*n)*(2*s^3*n - 2*s)^2 = 1. - Bruno Berselli, Feb 05 2011
FORMULA
G.f.: x*(-387199 - 390724*x - x^2)/(x-1)^3. - Vincenzo Librandi, Jan 25 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jan 25 2012
a(n) = 2*A158319(n)^2 - 1. - Bruno Berselli, Feb 05 2012
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {387199, 1552321, 3495367}, 40] (* Vincenzo Librandi, Jan 25 2012 *)
PROG
(Magma) I:=[387199, 1552321, 3495367]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jan 25 2012
(PARI) for(n=1, 22, print1(388962*n^2-1764*n+1", ")); \\ Vincenzo Librandi, Jan 25 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 05 2009
STATUS
approved