login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157736
a(n) = 388962*n^2 - 347508*n + 77617.
3
119071, 938449, 2535751, 4910977, 8064127, 11995201, 16704199, 22191121, 28455967, 35498737, 43319431, 51918049, 61294591, 71449057, 82381447, 94091761, 106579999, 119846161, 133890247, 148712257, 164312191, 180690049
OFFSET
1,1
COMMENTS
The identity (388962*n^2 - 347508*n + 77617)^2 - (441*n^2 - 394*n + 88)*(18522*n - 8274)^2 = 1 can be written as a(n)^2 - A157734(n)*A157735(n)^2 = 1.
This is the case s=21 and r=197 in the identity (2*(s^2*n-r)^2-1)^2 - (((s^2*n-r)^2-1)/s^2)*(2*s*(s^2*n-r))^2 = 1, where ((s^2*n-r)^2-1)/s^2 is an integer if r^2 == 1 (mod s^2). - Bruno Berselli, Apr 23 2018
FORMULA
G.f.: x*(119071 + 581236*x + 77617*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {119071, 938449, 2535751}, 40]
PROG
(Magma) I:=[119071, 938449, 2535751]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
(PARI) a(n) = 388962*n^2 - 347508*n + 77617.
CROSSREFS
Sequence in context: A253867 A253874 A253540 * A031686 A262510 A262509
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 05 2009
STATUS
approved