login
A030116
Number of distributive lattices; also number of paths with n turns when light is reflected from 12 glass plates.
10
1, 12, 78, 650, 5083, 40690, 323401, 2576795, 20514715, 163369570, 1300879372, 10358963615, 82488063476, 656851828075, 5230500095281, 41650400765615, 331661528811227, 2641015991983270, 21030372117368865, 167464549591889570, 1333517788817519126
OFFSET
0,2
COMMENTS
Let M(12) be the 12 X 12 matrix (0,0,0,1)/(0,0,1,1)/(0,1,1,1)/(1,1,1,1) and let v(12) be the 12-vector (1,1,..,1,1,1); then v(12)*M(12)^n = (x(1),x(2),...x(11),a(n)) - Benoit Cloitre, Sep 29 2002
REFERENCES
J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
LINKS
J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
Index entries for linear recurrences with constant coefficients, signature (6, 21, -35, -70, 56, 84, -36, -45, 10, 11, -1, -1).
FORMULA
G.f.: 1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x- 1/(-x-1/(-x-1)))))))))))). [Paul Barry, Mar 24 2010]
PROG
(PARI) k=12; M(k)=matrix(k, k, i, j, if(1-sign(i+j-k), 0, 1)); v(k)=vector(k, i, 1); a(n)=vecmax(v(k)*M(k)^n)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jacques Haubrich (jhaubrich(AT)freeler.nl)
EXTENSIONS
More terms from Benoit Cloitre, Sep 29 2002
STATUS
approved