OFFSET
0,2
COMMENTS
Let M(12) be the 12 X 12 matrix (0,0,0,1)/(0,0,1,1)/(0,1,1,1)/(1,1,1,1) and let v(12) be the 12-vector (1,1,..,1,1,1); then v(12)*M(12)^n = (x(1),x(2),...x(11),a(n)) - Benoit Cloitre, Sep 29 2002
REFERENCES
J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
LINKS
T. D. Noe, Table of n, a(n) for n = 0..200
J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
Index entries for linear recurrences with constant coefficients, signature (6, 21, -35, -70, 56, 84, -36, -45, 10, 11, -1, -1).
FORMULA
G.f.: 1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x- 1/(-x-1/(-x-1)))))))))))). [Paul Barry, Mar 24 2010]
PROG
(PARI) k=12; M(k)=matrix(k, k, i, j, if(1-sign(i+j-k), 0, 1)); v(k)=vector(k, i, 1); a(n)=vecmax(v(k)*M(k)^n)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jacques Haubrich (jhaubrich(AT)freeler.nl)
EXTENSIONS
More terms from Benoit Cloitre, Sep 29 2002
STATUS
approved