login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A025030 Number of distributive lattices; also number of paths with n turns when light is reflected from 7 glass plates. 11
1, 7, 28, 140, 658, 3164, 15106, 72302, 345775, 1654092, 7911970, 37846314, 181033035, 865951710, 4142180085, 19813648817, 94776329265, 453351783116, 2168556616440, 10373043626906, 49618272850056, 237343357526002 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Let M(7) be the 7 X 7 matrix: (0,0,0,0,0,0,1)/(0,0,0,0,0,1,1)/(0,0,0,0,1,1,1)/(0,0,0,1,1,1,1)/(0,0,1,1,1,1,1)/(0,1,1,1,1,1,1)/(1,1,1,1,1,1,1) and let v(7) be the vector (1,1,1,1,1,1,1); then v(7)*M(7)^n = (x,y,z,t,u,v,a(n)). - Benoit Cloitre, Sep 29 2002

REFERENCES

J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.

J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]

G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.

Index entries for linear recurrences with constant coefficients, signature (4,6,-10,-5,6,1,-1).

FORMULA

a(n) = 4*a(n-1) + 6*a(n-2) - 10*a(n-3) - 5*a(n-4) + 6*a(n-5) + a(n-6) - a(n-7).

a(n) is asymptotic to z(7)*w(7)^n where w(7) = (1/2)/cos(7*Pi/15) and z(7) is the root 1 < x < 2 of P(7, X) = 1 - 120*X - 8100*X^2 - 57375*X^3 + 50625*X^4. - Benoit Cloitre, Oct 16 2002

G.f.: (1 + 3*x - 6*x^2 - 4*x^3 + 5*x^4 + x^5 - x^6)/((1 - x)*(1 + x - x^2)*(1 - 4*x - 4*x^2 + x^3 + x^4)). - Colin Barker, Mar 31 2012

MATHEMATICA

CoefficientList[Series[(1+3*x-6*x^2-4*x^3+5*x^4+x^5-x^6)/((1-x)*(1+x-x^2)*(1-4*x-4*x^2+x^3+x^4)), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 22 2012 *)

PROG

(PARI) k=7; M(k)=matrix(k, k, i, j, if(1-sign(i+j-k), 0, 1)); v(k)=vector(k, i, 1); a(n)=vecmax(v(k)*M(k)^n)

(Magma) I:=[1, 7, 28, 140, 658, 3164, 15106]; [n le 7 select I[n] else 4*Self(n-1)+6*Self(n-2)-10*Self(n-3)-5*Self(n-4)+6*Self(n-5)+Self(n-6)-Self(n-7): n in [1..30]]; // Vincenzo Librandi, Apr 22 2012

CROSSREFS

See also A006356-A006359, A030112-A030116.

Sequence in context: A249872 A238448 A290356 * A001554 A026664 A304520

Adjacent sequences:  A025027 A025028 A025029 * A025031 A025032 A025033

KEYWORD

nonn,easy

AUTHOR

Jacques Haubrich (jhaubrich(AT)freeler.nl)

EXTENSIONS

More terms from Benoit Cloitre, Sep 29 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 1 13:28 EDT 2022. Contains 357149 sequences. (Running on oeis4.)