login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290356
The seventh Euler transform of the sequence with g.f. 1+x.
3
1, 1, 7, 28, 140, 602, 2772, 12166, 54046, 236093, 1030101, 4458247, 19223202, 82448782, 352247250, 1498724840, 6353940527, 26844401919, 113051495750, 474652297902, 1987159118837, 8296760311018, 34551340915438, 143533939056129, 594877730354756
OFFSET
0,3
COMMENTS
Also the number of 7-level rooted trees with n leaves. All n leaves are in level 7.
LINKS
B. A. Huberman and T. Hogg, Complexity and adaptation, Evolution, games and learning (Los Alamos, N.M., 1985). Phys. D 22 (1986), no. 1-3, 376-384.
FORMULA
G.f.: Product_{j>0} 1/(1-x^j)^A290355(j).
MAPLE
with(numtheory):
b:= proc(n, k) option remember; `if`(n<2, 1, `if`(k=0, 0, add(
add(b(d, k-1)*d, d=divisors(j))*b(n-j, k), j=1..n)/n))
end:
a:= n-> b(n, 7):
seq(a(n), n=0..30);
MATHEMATICA
b[n_, k_]:=b[n, k]=If[n<2, 1, If[k==0, 0, Sum[Sum[b[d, k - 1]*d, {d, Divisors[j]}] b[n - j, k], {j, n}]/n]]; Table[b[n, 7], {n, 0, 30}] (* Indranil Ghosh, Jul 30 2017, after Maple code *)
CROSSREFS
Column k=7 of A290353.
Cf. A290355.
Sequence in context: A354456 A249872 A238448 * A025030 A001554 A370243
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 28 2017
STATUS
approved