login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The seventh Euler transform of the sequence with g.f. 1+x.
3

%I #18 Aug 03 2017 17:40:34

%S 1,1,7,28,140,602,2772,12166,54046,236093,1030101,4458247,19223202,

%T 82448782,352247250,1498724840,6353940527,26844401919,113051495750,

%U 474652297902,1987159118837,8296760311018,34551340915438,143533939056129,594877730354756

%N The seventh Euler transform of the sequence with g.f. 1+x.

%C Also the number of 7-level rooted trees with n leaves. All n leaves are in level 7.

%H Alois P. Heinz, <a href="/A290356/b290356.txt">Table of n, a(n) for n = 0..1000</a>

%H B. A. Huberman and T. Hogg, <a href="https://doi.org/10.1016/0167-2789(86)90308-1">Complexity and adaptation</a>, Evolution, games and learning (Los Alamos, N.M., 1985). Phys. D 22 (1986), no. 1-3, 376-384.

%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>

%F G.f.: Product_{j>0} 1/(1-x^j)^A290355(j).

%p with(numtheory):

%p b:= proc(n, k) option remember; `if`(n<2, 1, `if`(k=0, 0, add(

%p add(b(d, k-1)*d, d=divisors(j))*b(n-j, k), j=1..n)/n))

%p end:

%p a:= n-> b(n, 7):

%p seq(a(n), n=0..30);

%t b[n_, k_]:=b[n, k]=If[n<2, 1, If[k==0, 0, Sum[Sum[b[d, k - 1]*d, {d, Divisors[j]}] b[n - j, k], {j, n}]/n]]; Table[b[n, 7], {n, 0, 30}] (* _Indranil Ghosh_, Jul 30 2017, after Maple code *)

%Y Column k=7 of A290353.

%Y Cf. A290355.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Jul 28 2017