login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367938
Expansion of e.g.f. exp(exp(3*x) - 1 - 2*x).
1
1, 1, 10, 55, 487, 4654, 51463, 632125, 8536492, 125279785, 1981246555, 33530245984, 603797462677, 11513675558701, 231539488842610, 4893151984630579, 108334206855000739, 2505977899186557502, 60419653270442268643, 1515077412621445514089, 39437350309301393464876, 1063746973172416765272589
OFFSET
0,3
FORMULA
G.f. A(x) satisfies: A(x) = 1 - x * ( 2 * A(x) - 3 * A(x/(1 - 3*x)) / (1 - 3*x) ).
a(n) = exp(-1) * Sum_{k>=0} (3*k-2)^n / k!.
a(0) = 1; a(n) = -2 * a(n-1) + Sum_{k=1..n} binomial(n-1,k-1) * 3^k * a(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * (-2)^(n-k) * 3^k * Bell(k).
MATHEMATICA
nmax = 21; CoefficientList[Series[Exp[Exp[3 x] - 1 - 2 x], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = -2 a[n - 1] + Sum[Binomial[n - 1, k - 1] 3^k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]
Table[Sum[Binomial[n, k] (-2)^(n - k) 3^k BellB[k], {k, 0, n}], {n, 0, 21}]
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace(exp(exp(3*x) - 1 - 2*x))) \\ Michel Marcus, Dec 07 2023
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 05 2023
STATUS
approved