login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367940
Expansion of e.g.f. exp(exp(4*x) - 1 - 3*x).
1
1, 1, 17, 113, 1377, 17185, 252401, 4104721, 73500609, 1430779713, 30026750161, 674586467505, 16130795165473, 408560492670049, 10915540174130353, 306531211899158609, 9019774516570506113, 277345675943850865281, 8889954225208868308369, 296408283056785166556401
OFFSET
0,3
FORMULA
G.f. A(x) satisfies: A(x) = 1 - x * ( 3 * A(x) - 4 * A(x/(1 - 4*x)) / (1 - 4*x) ).
a(n) = exp(-1) * Sum_{k>=0} (4*k-3)^n / k!.
a(0) = 1; a(n) = -3 * a(n-1) + Sum_{k=1..n} binomial(n-1,k-1) * 4^k * a(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * (-3)^(n-k) * 4^k * Bell(k).
MATHEMATICA
nmax = 19; CoefficientList[Series[Exp[Exp[4 x] - 1 - 3 x], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = -3 a[n - 1] + Sum[Binomial[n - 1, k - 1] 4^k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
Table[Sum[Binomial[n, k] (-3)^(n - k) 4^k BellB[k], {k, 0, n}], {n, 0, 19}]
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace(exp(exp(4*x) - 1 - 3*x))) \\ Michel Marcus, Dec 07 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 05 2023
STATUS
approved