login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367786
Expansion of e.g.f. exp(exp(4*x) - x - 1).
4
1, 3, 25, 235, 2737, 36947, 563657, 9542715, 176920417, 3555369635, 76820077945, 1772943290763, 43469116126737, 1127040956393203, 30779951676185385, 882453651485815003, 26480355971228530369, 829522636694530362691, 27064267045022876869337, 917751849133986186857003
OFFSET
0,2
FORMULA
a(n) = exp(-1) * Sum_{k>=0} (4*k-1)^n / k!.
a(0) = 1; a(n) = -a(n-1) + Sum_{k=1..n} binomial(n-1,k-1) * 4^k * a(n-k).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * 4^k * Bell(k).
MATHEMATICA
nmax = 19; CoefficientList[Series[Exp[Exp[4 x] - x - 1], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = -a[n - 1] + Sum[Binomial[n - 1, k - 1] 4^k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
Table[Sum[(-1)^(n - k) Binomial[n, k] 4^k BellB[k], {k, 0, n}], {n, 0, 19}]
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace(exp(exp(4*x) - x - 1))) \\ Michel Marcus, Nov 30 2023
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 30 2023
STATUS
approved