login
A367789
E.g.f. satisfies A(x) = exp( x/(1-x)^3 * A(x) ).
6
1, 1, 9, 106, 1697, 35076, 893947, 27165706, 960298593, 38751082552, 1758831242291, 88726543365054, 4926355857050641, 298605321687360676, 19623211558172733435, 1389870724939251455506, 105556814502357807727553, 8557797733469700008170224
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( -LambertW(-x/(1-x)^3) ).
a(n) = n! * Sum_{k=0..n} (k+1)^(k-1) * binomial(n+2*k-1,n-k)/k!.
MAPLE
A367789 := proc(n)
n!*add((k+1)^(k-1) * binomial(n+2*k-1, n-k)/k!, k=0..n) ;
end proc:
seq(A367789(n), n=0..70) ; # R. J. Mathar, Dec 04 2023
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x/(1-x)^3))))
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Seiichi Manyama, Nov 30 2023
STATUS
approved