login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285065
Alternating row sums of Sheffer triangle S2[4,1] = A285061.
4
1, -3, -7, 53, 497, -147, -44055, -437339, 971745, 90858205, 1254551513, -56188139, -361749699119, -7793811482035, -47717641321527, 2053219888651909, 77548473901557697, 1171383881442334141, -8155337883596701767
OFFSET
0,2
COMMENTS
See A285061 for details. This is a generalization of A000587.
FORMULA
a(n) = Sum_{m=0..n} (-1)^m*A285061(n, m), n >= 0.
E.g.f.: exp(x)*exp(1 - exp(4*x)).
a(n) = e*Sum_{m>=0} ((-1)^m / m!)*(1 + 4*m)^n, n >= 0, (Dobiński type formula).
a(n) = Sum_{k=0..n} binomial(n, k) * 4^k * A000587(k), n >= 0. - Vaclav Kotesovec, Apr 23 2017
a(0) = 1; a(n) = a(n-1) - Sum_{k=1..n} binomial(n-1,k-1) * 4^k * a(n-k). - Ilya Gutkovskiy, Nov 30 2023
MATHEMATICA
Table[Sum[Binomial[n, k]*BellB[k, -1]*4^k, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 19 2017 *)
PROG
(Python)
from sympy import bell, binomial
def a(n): return sum([binomial(n, k)*bell(k, -1)*4**k for k in range(n + 1)]) # Indranil Ghosh, May 06 2017
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Apr 13 2017
STATUS
approved