login
A285064
Row sums of Sheffer triangle S2[4,1] = A285061.
10
1, 5, 41, 429, 5329, 75989, 1215481, 21453693, 412820385, 8579772325, 191166679497, 4538638641997, 114238219541617, 3035305413035125, 84819458105387417, 2484842038066995485, 76101249873390595905, 2430497813260105226053, 80769536433102942870377, 2787318255464814752951533
OFFSET
0,2
COMMENTS
See A285061 for details. These are generalized Bell numbers (A000110) because A285061 is a generalized Stirling2 triangle.
For the alternating row sums of A285061 see A285065.
FORMULA
a(n) = Sum_{m=0..n} A285061(n, m), n >= 0.
E.g.f.: exp(x)*exp(exp(4*x) - 1).
a(n) = (1/e)*Sum_{m>=0} (1/m!)*(1+4*m)^n, n >= 0. (DobiƄski type formula from the A285061(n,m) sum formula, after interchange of summations).
a(n) = Sum_{k=0..n} binomial(n, k)*A000110(k)*4^k, n >= 0. From the Vaclav Kotesovec program. This follows from the S2[4,1] formula in terms of Stirling2. - Wolfdieter Lang, Apr 24 2017
a(0) = 1; a(n) = a(n-1) + Sum_{k=1..n} binomial(n-1,k-1) * 4^k * a(n-k). - Ilya Gutkovskiy, Jun 21 2022
a(n) ~ Bell(n) * (4 + LambertW(n)/n)^n. - Vaclav Kotesovec, Jun 22 2022
a(n) ~ 4^n * n^(n + 1/4) * exp(n/LambertW(n) - n - 1) / (sqrt(1 + LambertW(n)) * LambertW(n)^(n + 1/4)). - Vaclav Kotesovec, Jun 27 2022
MATHEMATICA
Table[Sum[Binomial[n, k]*BellB[k]*4^k, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 19 2017 *)
PROG
(Python)
from sympy import binomial, bell
def a(n): return sum([binomial(n, k)*bell(k)*4**k for k in range(n + 1)]) # Indranil Ghosh, Apr 19 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Apr 13 2017
STATUS
approved