login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A329123
Row sums of A329060.
2
1, 5, 41, 420, 4986, 66810, 1002088, 16806508, 315407579, 6620028959, 154924624070, 4020925173996, 114962504927760, 3595318334723744, 122162584874240256, 4482358458470131580, 176643906831439963801, 7441446644628587378829, 333713924433617162053239, 15872723846851837735096664
OFFSET
0,2
LINKS
FORMULA
a(n) = binomial(3 + 5*n, n)*2F1([1, -n], [-3 - 5*n], 1 + n)/(1 + n), where 2F1 is the hypergeometric function.
a(n) ~ exp(5) * n^(n-1). - Vaclav Kotesovec, Nov 06 2019
MAPLE
f:= n -> simplify(binomial(3 + 5*n, n)*hypergeom([1, -n], [-3 - 5*n], 1 + n)/(1 + n)):
map(f, [$0..30]); # Robert Israel, Nov 13 2019
MATHEMATICA
Table[(Binomial[3+5n, n]Hypergeometric2F1[1, -n, -3-5n, 1+n])/(1+n), {n, 0, 19}]
CROSSREFS
Sequence in context: A199684 A177506 A064087 * A375437 A285064 A232685
KEYWORD
nonn
AUTHOR
Stefano Spezia, Nov 05 2019
STATUS
approved