login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A329060 4-parking triangle T(r, i, 4) read by rows: T(r, i, k) = (r + 1)^(i-1)*binomial(k*(r + 1) + r - i - 1, r - i) with k = 4 and 0 <= i <= r. 5
1, 4, 1, 26, 12, 3, 204, 136, 64, 16, 1771, 1540, 1050, 500, 125, 16380, 17550, 15600, 10800, 5184, 1296, 158224, 201376, 220255, 198940, 139258, 67228, 16807, 1577532, 2324784, 3015936, 3351040, 3063808, 2162688, 1048576, 262144, 16112057, 26978328, 40467492, 53298648, 59960979, 55348596, 39326634, 19131876, 4782969 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The k-parking numbers interpolate between the generalized Fuss-Catalan numbers and the number of parking functions (see Yip).

LINKS

Stefano Spezia, First 151 rows of the triangle, flattened

Martha Yip, A Fuss-Catalan variation of the caracol flow polytope, arXiv:1910.10060 [math.CO], 2019.

FORMULA

T(r, i, k) = (r + 1)^(i-1)*binomial(k*(r + 1) + r - i - 1, r - i).

T(r, 0, 4) = A118971(r).

T(r, r, 4) = A000272(r + 1).

EXAMPLE

r/i|    0      1      2      3      4

—————————————————————————————————————

0  |    1

1  |    4      1

2  |   26     12      3

3  |  204    136     64     16

4  | 1771   1540   1050    500    125

...

MATHEMATICA

T[r_, i_, k_] := (r + 1)^(i-1)*Binomial[k*(r + 1) + r - i - 1, r - i]; Flatten[Table[T[r, i, 4, {r, 0, 8}, {i, 0, r}]]

CROSSREFS

Cf. A000108, A000272, A007318, A118971, A329057, A329058, A329059, A329123 (row sums).

Sequence in context: A196528 A135897 A039816 * A118283 A095891 A095887

Adjacent sequences:  A329057 A329058 A329059 * A329061 A329062 A329063

KEYWORD

nonn,tabl

AUTHOR

Stefano Spezia, Nov 03 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 22:35 EDT 2021. Contains 348180 sequences. (Running on oeis4.)