login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329061
Greatest k such that A002805(k) is not divisible by n, or a(n) = 0 if there's no such k.
2
0, 1, 68, 3, 124, 68, 719102, 7, 206, 124, 11130347490407364042652446389727, 68, 2196, 719102, 124, 15, 4912, 206, 16128612858, 124, 719102, 11130347490407364042652446389727, 12166, 68, 624, 2196, 620, 719102, 20171036, 124, 27488495831, 31, 11130347490407364042652446389727
OFFSET
1,3
COMMENTS
There are two cases where a(n) = 0: (a) n divides A002805(k) for all k, which only happens for n = 1; (b) there are infinitely many k such that n does not divide A002805(k), which may happen for some primes p and their multiples.
For k > a(n) > 0, A002805(k) is always divisible by n.
For prime p and k >= p, A002805(k) = (the denominator of s + (Sum_{i=1..floor(k/p)} 1/i)/p) is not divisible by p if and only if p divides A001008(floor(k/p)) = (the numerator of Sum_{i=1..floor(k/p)} 1/i), because the denominator of s = Sum_{1 <= i <= k, i is not divisible by p} 1/i can never be divisible by p.
If k == -1 or 0 (mod p), then p divides A001008(k) iff p^2 divides A001008(floor(k/p)), otherwise p divides A001008(k) iff p divides the numerator of (Sum_{i=floor(k/p)*p+1..k} 1/i) + (Sum_{i=1..floor(k/p)} 1/i)/p, where p is an odd prime and k >= p. (Since Sum_{i=1..p-1} (p-1)!/i = (-1)^((p-1)/2)*((p-1)/2)!*(Sum_{i=1..(p-1)/2} ((p-1)/2)!/i) + ((p-1)/2)!*(Sum_{i=1..(p-1)/2} (-1)^((p-1)/2)*((p-1)/2)!/(-i)) == 0 (mod p), odd prime p divides the numerator of Sum_{1 <= i <= floor(k/p)*p, i is not divisible by p} 1/i.)
LINKS
Eric Weisstein's World of Mathematics, Harmonic Number
FORMULA
If n = Product_{j=1..i} p_j^e_j, p_1 < ... < p_i are primes and a(p_j^e_j) > 0, then a(n) = Max_{j=1..i} a(p_j^e_j).
a(p^e) = p^(e-1)*(a(p)+1) - 1 for prime p and a(p) > 0. Proof: A001008(k)/A002805(k) = (Sum_{1 <= i <= k, i is not divisible by p^e} 1/i) + (Sum_{i=1..floor(k/p^e)} 1/i)/p^e), hence A002805(k) is not divisible by p^e if and only if p divides A001008(floor(k/p^e)). From the comment, we know that (a(p)+1)/p - 1 is the greatest m such that p divides A001008(m). Therefore, a(p^e) = p^e*((a(p)+1)/p-1) + p^e - 1 = p^(e-1)*(a(p)+1) - 1.
a(prime(i)) = (A177734(i)+1)*prime(i) - 1, where prime(i) = A000040(i). - Jinyuan Wang, Feb 06 2020
EXAMPLE
For p = 3, 3 divides numerator(1+1/2), so 2*3, 2*3 + 1 and 2*3 + 2 are such k that A002805(k) can't be divisible by 3. Similarly, 7*3, 7*3 + 1 and 7*3 + 2 are such k. Mod(A001008(7), 3) > 0 and Mod(numerator(1/22 + (Sum_{i=1..7} 1/i)/3), 3) = 0, hence 3 divides A001008(22), which means 22*3, 22*3 + 1 and 22*3 + 2 are also such k. a(3) = 68 because A001008(k) can never be divisible by 3 for k = 66, 67 and 68.
CROSSREFS
KEYWORD
nonn
AUTHOR
Jinyuan Wang, Dec 07 2019
EXTENSIONS
More terms from Jinyuan Wang, Feb 06 2020
STATUS
approved