login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282338
T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than four of its king-move neighbors, with the exception of exactly one element.
6
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 68, 0, 0, 0, 0, 648, 648, 0, 0, 0, 0, 5794, 10680, 5794, 0, 0, 0, 0, 50800, 182876, 182876, 50800, 0, 0, 0, 0, 425030, 3025368, 5850650, 3025368, 425030, 0, 0, 0, 0, 3471260, 47432264, 182122160, 182122160, 47432264, 3471260, 0
OFFSET
1,13
COMMENTS
Table starts
.0.0........0...........0.............0................0..................0
.0.0........0...........0.............0................0..................0
.0.0.......68.........648..........5794............50800.............425030
.0.0......648.......10680........182876..........3025368...........47432264
.0.0.....5794......182876.......5850650........182122160.........5361683933
.0.0....50800.....3025368.....182122160......10612378412.......584739260830
.0.0...425030....47432264....5361683933.....584739260830.....60339274001772
.0.0..3471260...729388572..154725005658...31572290506580...6102190337530204
.0.0.27860736.11019803902.4387999601749.1674538977289754.606112878947605223
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1)
k=3: [order 20]
k=4: [order 36]
EXAMPLE
Some solutions for n=4 k=4
..1..1..0..0. .1..1..1..1. .1..0..1..0. .1..1..0..0. .0..1..1..1
..1..1..1..0. .0..1..0..1. .1..1..1..1. .0..1..1..0. .1..1..0..0
..1..0..0..0. .0..0..1..1. .1..0..0..1. .1..0..1..1. .1..1..0..0
..1..1..0..0. .1..1..1..0. .1..1..1..0. .0..0..1..0. .0..0..1..0
CROSSREFS
Sequence in context: A191941 A087536 A281888 * A198210 A329061 A033388
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 12 2017
STATUS
approved