login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282341
Primes p of the form x^2 + y^2 such that q = (x^2 + 1)/y^2 is a prime less than p.
1
349, 1049, 1733, 33749, 53849, 79549, 135449, 381949, 535849, 558149, 692249, 1036349, 1156249, 1483549, 1871449, 2304349, 3097769, 6181349, 6411049, 8809049, 10355549, 11102249, 16401701, 16491521, 22867549, 26419769, 27457889, 30603049, 31728577, 34176557
OFFSET
1,1
COMMENTS
The negative Pell equation x^2 - q*y^2 = -1, hence q = (x^2 + 1)/y^2.
Primes p = q are A002496.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
For prime p = 349 = 18^2 + 5^2 is q = (18^2 + 1)/5^2 = 13 prime < p.
PROG
(PARI) list(lim)=my(v=List(), x2, q, y, p); for(x=1, sqrtint(lim\4), x2=4*x^2; [q, y]=core(x2+1, 1); p=x2+y^2; if(q<p && p<=lim && isprime(q) && isprime(p), listput(v, p))); Set(v) \\ Charles R Greathouse IV, Feb 14 2017
CROSSREFS
Subsequence of A002313.
Sequence in context: A054824 A031420 A273530 * A285463 A138944 A043619
KEYWORD
nonn
AUTHOR
Thomas Ordowski and Altug Alkan, Feb 12 2017
STATUS
approved