login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282342
a(n) is the smallest prime number, with sum of digits equals n and a(n) is greater than previous nonzero terms, except if this is not possible in which case a(n)=0
0
0, 2, 3, 13, 23, 0, 43, 53, 0, 73, 83, 0, 139, 149, 0, 277, 359, 0, 379, 389, 0, 499, 599, 0, 997, 1889, 0, 1999, 2999, 0, 4999, 6899, 0, 17989, 18899, 0, 29989, 39989, 0, 49999, 59999, 0, 79999, 98999, 0, 199999, 389999, 0, 598999, 599999, 0, 799999, 989999, 0, 2998999
OFFSET
1,2
COMMENTS
I conjecture that there are prime numbers for every n, if n is not divisible by 3.
Other terms:
a(97) = 79999999999;
a(98) = 98999999999;
a(100) = 298999999999;
a(1000) = 299989999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999.
EXAMPLE
a(23) = 599 because 599 is a prime number greater than a(22) = 499 and the sum of its digits is 5 + 9 + 9 = 23.
a(24) = 0 because 24 (mod 3) = 0.
MATHEMATICA
a = {1}; Do[If[n != 3 && Divisible[n, 3], AppendTo[a, 0], p = NextPrime@ Max@ a; While[Total@ IntegerDigits@ p != n, p = NextPrime@ p]; AppendTo[a, p]], {n, 2, 57}]; a (* Michael De Vlieger, Feb 12 2017 *)
PROG
(PARI) {
print1(0", "2", ");
n=3; p=3; sp=3;
while(p<1000000,
while(sp<>n,
p=nextprime(p+1);
sp=sumdigits(p);
);
print1(p", ");
n++; if(n%3==0, n++; print1(0", "));
)
}
CROSSREFS
Cf. A067180.
Sequence in context: A138699 A341713 A077248 * A137248 A355438 A358427
KEYWORD
nonn,base
AUTHOR
Dimitris Valianatos, Feb 12 2017
STATUS
approved