login
A198210
Frequency of different patterns of permutation's cycles in transitive group PZL(2,16) of order 8160.
0
1, 0, 0, 0, 0, 0, 68, 0, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 272, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1020, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,7
COMMENTS
These patterns p_n are successive ordered integer partitions of number 17 on sum of integers.
p_1= {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1},
p_2= {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2},
p_297={17}
Group PZL(2,16) is Galois group over rationals for some polynomials of 17 degree. Anyone sample isn't know up to now (these is smallest order group with unknown example).
EXAMPLE
a(1)=1 because group contained only one permutation with pattern a_1={1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}.
a(7)=68 because in group are 68 different permutations of 17 elements with pattern p_7={1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2}
CROSSREFS
Sequence in context: A087536 A281888 A282338 * A329061 A033388 A196109
KEYWORD
uned,nonn,fini
AUTHOR
Artur Jasinski, Oct 22 2011
STATUS
approved