login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281888
T(n,k)=Number of nXk 0..1 arrays with no element equal to more than four of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
6
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 68, 0, 0, 0, 0, 638, 638, 0, 0, 0, 0, 4832, 9284, 4832, 0, 0, 0, 0, 35002, 112320, 112320, 35002, 0, 0, 0, 0, 241209, 1282388, 2156646, 1282388, 241209, 0, 0, 0, 0, 1612568, 13907664, 38763782, 38763782, 13907664, 1612568, 0, 0
OFFSET
1,13
COMMENTS
Table starts
.0.0........0...........0.............0...............0.................0
.0.0........0...........0.............0...............0.................0
.0.0.......68.........638..........4832...........35002............241209
.0.0......638........9284........112320.........1282388..........13907664
.0.0.....4832......112320.......2156646........38763782.........663476572
.0.0....35002.....1282388......38763782......1091754188.......29340232714
.0.0...241209....13907664.....663476572.....29340232714.....1239784258612
.0.0..1612568...146131060...10998070526....763669110112....50762954675186
.0.0.10566034..1503637694..178432948526..19447316121332..2032908127837419
.0.0.68136376.15223224224.2848000336302.487171820681716.80080573259154704
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1)
k=3: [order 14] for n>17
k=4: [order 46] for n>49
EXAMPLE
Some solutions for n=4 k=4
..0..1..0..1. .0..1..1..0. .0..0..0..1. .0..1..1..1. .0..0..1..1
..1..1..1..0. .1..0..0..0. .1..0..1..1. .1..0..1..0. .0..1..1..1
..1..0..0..1. .0..0..1..0. .1..0..1..0. .1..0..0..0. .1..1..0..1
..1..0..0..0. .1..1..0..0. .0..1..1..1. .0..1..0..1. .0..1..0..0
CROSSREFS
Sequence in context: A379371 A191941 A087536 * A282338 A198210 A329061
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 01 2017
STATUS
approved