%I #4 Feb 01 2017 09:25:49
%S 0,0,0,0,0,0,0,0,0,0,0,0,68,0,0,0,0,638,638,0,0,0,0,4832,9284,4832,0,
%T 0,0,0,35002,112320,112320,35002,0,0,0,0,241209,1282388,2156646,
%U 1282388,241209,0,0,0,0,1612568,13907664,38763782,38763782,13907664,1612568,0,0
%N T(n,k)=Number of nXk 0..1 arrays with no element equal to more than four of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
%C Table starts
%C .0.0........0...........0.............0...............0.................0
%C .0.0........0...........0.............0...............0.................0
%C .0.0.......68.........638..........4832...........35002............241209
%C .0.0......638........9284........112320.........1282388..........13907664
%C .0.0.....4832......112320.......2156646........38763782.........663476572
%C .0.0....35002.....1282388......38763782......1091754188.......29340232714
%C .0.0...241209....13907664.....663476572.....29340232714.....1239784258612
%C .0.0..1612568...146131060...10998070526....763669110112....50762954675186
%C .0.0.10566034..1503637694..178432948526..19447316121332..2032908127837419
%C .0.0.68136376.15223224224.2848000336302.487171820681716.80080573259154704
%H R. H. Hardin, <a href="/A281888/b281888.txt">Table of n, a(n) for n = 1..179</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1)
%F k=2: a(n) = a(n-1)
%F k=3: [order 14] for n>17
%F k=4: [order 46] for n>49
%e Some solutions for n=4 k=4
%e ..0..1..0..1. .0..1..1..0. .0..0..0..1. .0..1..1..1. .0..0..1..1
%e ..1..1..1..0. .1..0..0..0. .1..0..1..1. .1..0..1..0. .0..1..1..1
%e ..1..0..0..1. .0..0..1..0. .1..0..1..0. .1..0..0..0. .1..1..0..1
%e ..1..0..0..0. .1..1..0..0. .0..1..1..1. .0..1..0..1. .0..1..0..0
%K nonn,tabl
%O 1,13
%A _R. H. Hardin_, Feb 01 2017