Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Feb 01 2017 09:25:49
%S 0,0,0,0,0,0,0,0,0,0,0,0,68,0,0,0,0,638,638,0,0,0,0,4832,9284,4832,0,
%T 0,0,0,35002,112320,112320,35002,0,0,0,0,241209,1282388,2156646,
%U 1282388,241209,0,0,0,0,1612568,13907664,38763782,38763782,13907664,1612568,0,0
%N T(n,k)=Number of nXk 0..1 arrays with no element equal to more than four of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
%C Table starts
%C .0.0........0...........0.............0...............0.................0
%C .0.0........0...........0.............0...............0.................0
%C .0.0.......68.........638..........4832...........35002............241209
%C .0.0......638........9284........112320.........1282388..........13907664
%C .0.0.....4832......112320.......2156646........38763782.........663476572
%C .0.0....35002.....1282388......38763782......1091754188.......29340232714
%C .0.0...241209....13907664.....663476572.....29340232714.....1239784258612
%C .0.0..1612568...146131060...10998070526....763669110112....50762954675186
%C .0.0.10566034..1503637694..178432948526..19447316121332..2032908127837419
%C .0.0.68136376.15223224224.2848000336302.487171820681716.80080573259154704
%H R. H. Hardin, <a href="/A281888/b281888.txt">Table of n, a(n) for n = 1..179</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1)
%F k=2: a(n) = a(n-1)
%F k=3: [order 14] for n>17
%F k=4: [order 46] for n>49
%e Some solutions for n=4 k=4
%e ..0..1..0..1. .0..1..1..0. .0..0..0..1. .0..1..1..1. .0..0..1..1
%e ..1..1..1..0. .1..0..0..0. .1..0..1..1. .1..0..1..0. .0..1..1..1
%e ..1..0..0..1. .0..0..1..0. .1..0..1..0. .1..0..0..0. .1..1..0..1
%e ..1..0..0..0. .1..1..0..0. .0..1..1..1. .0..1..0..1. .0..1..0..0
%K nonn,tabl
%O 1,13
%A _R. H. Hardin_, Feb 01 2017