%I
%S 0,0,0,0,0,0,0,0,0,0,0,0,68,0,0,0,0,638,638,0,0,0,0,4832,9284,4832,0,
%T 0,0,0,35002,112320,112320,35002,0,0,0,0,241209,1282388,2156646,
%U 1282388,241209,0,0,0,0,1612568,13907664,38763782,38763782,13907664,1612568,0,0
%N T(n,k)=Number of nXk 0..1 arrays with no element equal to more than four of its kingmove neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
%C Table starts
%C .0.0........0...........0.............0...............0.................0
%C .0.0........0...........0.............0...............0.................0
%C .0.0.......68.........638..........4832...........35002............241209
%C .0.0......638........9284........112320.........1282388..........13907664
%C .0.0.....4832......112320.......2156646........38763782.........663476572
%C .0.0....35002.....1282388......38763782......1091754188.......29340232714
%C .0.0...241209....13907664.....663476572.....29340232714.....1239784258612
%C .0.0..1612568...146131060...10998070526....763669110112....50762954675186
%C .0.0.10566034..1503637694..178432948526..19447316121332..2032908127837419
%C .0.0.68136376.15223224224.2848000336302.487171820681716.80080573259154704
%H R. H. Hardin, <a href="/A281888/b281888.txt">Table of n, a(n) for n = 1..179</a>
%F Empirical for column k:
%F k=1: a(n) = a(n1)
%F k=2: a(n) = a(n1)
%F k=3: [order 14] for n>17
%F k=4: [order 46] for n>49
%e Some solutions for n=4 k=4
%e ..0..1..0..1. .0..1..1..0. .0..0..0..1. .0..1..1..1. .0..0..1..1
%e ..1..1..1..0. .1..0..0..0. .1..0..1..1. .1..0..1..0. .0..1..1..1
%e ..1..0..0..1. .0..0..1..0. .1..0..1..0. .1..0..0..0. .1..1..0..1
%e ..1..0..0..0. .1..1..0..0. .0..1..1..1. .0..1..0..1. .0..1..0..0
%K nonn,tabl
%O 1,13
%A _R. H. Hardin_, Feb 01 2017
