login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329057
1-parking triangle T(r, i, 1) read by rows: T(r, i, k) = (r + 1)^(i-1)*binomial(k*(r + 1) + r - i - 1, r - i) with k = 1 and 0 <= i <= r.
6
1, 1, 1, 2, 3, 3, 5, 10, 16, 16, 14, 35, 75, 125, 125, 42, 126, 336, 756, 1296, 1296, 132, 462, 1470, 4116, 9604, 16807, 16807, 429, 1716, 6336, 21120, 61440, 147456, 262144, 262144, 1430, 6435, 27027, 104247, 360855, 1082565, 2657205, 4782969, 4782969, 4862, 24310, 114400, 500500, 2002000, 7150000, 22000000, 55000000, 100000000, 100000000
OFFSET
0,4
COMMENTS
The k-parking numbers interpolate between the generalized Fuss-Catalan numbers and the number of parking functions (see Yip).
LINKS
Carolina Benedetti, Rafael S. González D’León, Christopher R. H. Hanusa, Pamela E. Harris, Apoorva Khare, Alejandro H. Morales, Martha Yip, The volume of the caracol polytope, Séminaire Lotharingien de Combinatoire 80B.87 (2018).
Martha Yip, A Fuss-Catalan variation of the caracol flow polytope, arXiv:1910.10060 [math.CO], 2019.
FORMULA
T(r, i, k) = (r + 1)^(i-1)*binomial(k*(r + 1) + r - i - 1, r - i).
T(r, 0, 1) = A000108(r).
T(r, r, 1) = A000272(r + 1).
EXAMPLE
r/i| 0 1 2 3 4
———————————————————————
0 | 1
1 | 1 1
2 | 2 3 3
3 | 5 10 16 16
4 | 14 35 75 125 125
MATHEMATICA
T[r_, i_, k_] := (r + 1)^(i-1)*Binomial[k*(r + 1) + r - i - 1, r - i]; Flatten[Table[T[r, i, 1], {r, 0, 9}, {i, 0, r}]]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, Nov 02 2019
STATUS
approved